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Abstract

N A model is constructed of a nonlinear, one-dimensional inhomogeneous multi -
componen! plasma slab which has the characteristics of the plasma sheath surround-
ing a typical hypersonic re-entry vehicle at 200, 000 ft while traveling at about 18, 000
ft/second. A plane wave incident upon the slab at arbitrary angle can induce changes in
electron temperature without affecting the neutral gas temperature. The variations

of electron temperature produce changes in collision frequency and the rate coeffi-
cients describing the various electron production and loss mechanisms. Such changes
cause alteratiors in the effective dielectric constant of the medium. On the basis of

a model of a plane-layered medium composed of a stack of linear homogeneous sheets,
the reflection and transmission coefficients of the nonlinear slab may be computed

by a step-by-step numerical integration of Maxwell's equations expressed in the form
of difference equations.
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Nonlinear Transmission CB&rdctorisﬁci
of the Plasma Sheath

1. INTRODUCTION

A hypersonic re-entry vehicle i8 enveloped by a shock-induced sheath of ionized
gas. This re-entry plasma sheath can greatly influence electromagnetic communica-
tions frequencies in the radio and microwave range. Many calculations have been
made on the reflection and transmission propertiés of the plasma sheath surround-
ing a hypersonic re-entry vehicle. Perhaps the most straightforward analysis,
which can yield useful information on signal degradation, is based upon the model
consisting of a plane wave incident on a dielectric slab. The electromagnetic prop-
erties of the re-entry plasma sheath are characterized by an équivalent dielectric
slab whose complex dielectric constant and thickness simulate the actual plasma
sheath. However this type of analysis is not capable of predicting the dominant
characteristics of the radiation patterns of plasma-coated slot antennas located on
a re-entry vehicle surface.

If communications between the vehicle and ground are effected by means of slots
or horns flush-mounted on the missile surface, a suitable model describing the an-
tenna system consists of a slot-excited plasma slab covering a ground plane. The
prominent features of the radiation patterns of such Y structure m'ly be obtained by

- evaluating the integral repreuntstlonl for the field componontl by the method of

steepest descent. Tamir and Olinor hnve demonstrated that the near fieldof a
slot-excited plasma slab is represented mainly by contrlbutionl from complex waves.

(Received for publication, 28 February 1968)



For frequencies below the plasma {requency, the complex waves are of the spectral
type which do not transport energy but represent stored energy. At frequencies
above the plasma frequency, the complex waves are of the leaky-wave type and may
be strongly excited for certain slab thicknesses. The shape of the far-field radiation
pattern may be obtained by integrating the near field over a Kirchoff-Huygens sur-
face. The near-field components are found by evaluating the integral representa-
tions of the field by the calculus of residues. For frequencies greater than the
plasma frequency, the radiation pattern of a slot-excited grounded plasma slab exhibits
peaks at the critical angle. Shore and Meltz2 have investigated the far-field compo-
nents using Fourier anslysis and the stationary phase procedure for the case of a
slot in a ground plane covered by an anisotropic lossy plasma layer.

These methods of analysis usually assume a uniform plasma layer, although
inhomogenieties in one dimension may be taken into account by using a plane-layered
model. Felsen and Marcnvitz3 have pointed out that an electromagnetic field prob-
lem with prescribed sources may be reduced by suitable modal procedures to a net-
work problem. The equivalent network problem may then be solved for a typical
mode and the field solution is then obtained by modal synthesis. The problem of the
modal analysis of a plane-layered medium may be transformed into an equivalent
network problem of a transmission line consisting of uniform sections, where the
voltage and current at the discontinuities in the line have the same boundary condi -
tions as the E and H fields have at the discontinuities in the plane-layered medium.

All of these approaches to the problem of electromagnetic transmission through
the re-entry plasma sheath do not consider the effect of perturbations induced in the
plasma medium by the presence of an electromagnetic wave, If the electromagnetic
propagation characteristics of the plasma medium are described by a complex die-
lectric constant K, then this parameter may be related to the electron density N e
and electron-neutral collision frequency v:

K=K, + K

(«nplm)2 (vlu.’)(mpl(a:)2

s] - -

1+ (v/w)? Yt ol

. (1

For relatively high field strengths, it is expected that the degree of ionization and
the electron-neutral particle collision frequency will change, thereby altering the
electromagnetic transmission characteristics of the plasma medium. However,
any model for describing such a nonlinear interaction between high-power electro-
magnetic radiation and the plasma medium will have to include a detailed picture of
the interaction of the local fields inside the medium with the plasma constituents.



A detailed picture of the various microscopic processes, such as the local field-
particle interactions and the particle-particle interactions, give rise to a medium that
may be characterized on a macroscopic level by a complex dielectric constant that
is dependent upon the local field distribution in the plasma medium. This type of
medium does not lend itself to modal analysis, since the representation of an arbi-
trary field in the medium by a Fourier integral over the wave numbers depends upon
the validity of the principle of superposition. Each mode i8 assumed to propagate
with a phase velocity that depends upon the dielectric constant of the medium, and
the dielectric constant is assumed to be independent of the presence of other modes.
This condition is no longer satisfied in a medium whose dielectric constant depends
upon the local field distribution in the medium. For this reason a nonlinear model
was constructed consisting of a plane wave of arbitrary angle of polarization inci-
dent at an arbitrary angle upon a plane-layered plasma slab. The slab consists of
all the constituents normally found behind a high-temperature shock (5000°K). The
thermodynamic and gas kinetic parameters were selected to coincide with conditions
found behind a shock of a representative blunt-nosed vehicle traveling at 18, 000 ft/
sec at an altitude of 200, 000 feet.

The total reflection and transmission coefficients of a plane-layered plasma
slab having the same characteristics as the sheath surrounding a typical re-entry
vehicle may be computed for an incident plane wave consisting of a single frequency
component. The nonlinear response of the plasma medium to the perturbing electro-
magnetic wave is found for the steady-state case, corresponding to an incident plane
wave whose frequency is much greater than the frequency for energy transfer be-
tween the electron gas and the neutral-particle gas. The condition for a steady-
state nonlinear response of a plasma to a perturbing electromagnetic wave may be
written ’

w >>Gy ,
where

= frequency of impressed field

= relative fractional energy loss of an electron in colliding
with a neutral particle (G = 2m/M for clectron elastic
collisions with neutrals of mass M)

v = electron-neutral particle collision frequency.

w
G

Since TEN " 1/Gv is the energy relaxation time for the electron gas, this condition
may be written:

where T = 27/w is the period of the impressed field. Because the energy relaxation
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time for the electron gas is much greater than the period of the impressed electro-

magnetic field, the electron temperature will settle down to some average value

dependent upon the mean square value of the electromagnetic field. In the steady

state the electromagnetic propagation characteristics of a plasma perturbed by a

relatively high-power electromagnetic field may be determined by specifying the

complex dielectric constant, which is a function of the following parameters: —
(1) An effective electron collision frequency

5/2 2
verr * 3 (ﬁ‘r") S v ! ‘*"(‘fﬁ!')d"
e

e
-1 (T )
2
YEFF © Ymax (Te) + 3 Te ——%‘i‘i—_g_ ’ @

where

"max(Te) " 4'SV(V) fmax VZdv

/2 2
= 4x (2—:&:)3 S.V(v) ve exp (;’?rve )dv .

v(v) i8 the electron collision frequency as a function of electron velocity and
T e is the electron temperature.
(2) The interelectron collision frequency

N_InA

v = %___7_ ’ ‘3)
ee  y3.4al/2p 3/2 .

e
where (t nA) is given as a function of N, and T, by Spitzer.s
electrons.
(3) The electron density N,
(4) The isotropic part of the electron velocity distribution function ‘o (which is
very nearly Maxwellian even in the presence of a strong electromagnetic fleld if
the interelectron collision frequency is much greater than the collision frequency
for energy transfer between the electron gas and the neutral-particle gas Vee >>Gv).
It turns out that the condition » ce >> Gv is satisfied for the partially-ionized
(0. 01 to 0. 1%) plasma behind strong shocks in air over a considerable range of

A =1/1823 for
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pressures and temperatures. Pellum6 has tabulated the electron density, ‘the inter-
electron collision frequency, and the electron-neutral collision frequency for the
stagnation region behind a normal shock with a free-stream velocity of 18, 000 ft/sec
st altitudes of 40, 60, 80, and 100 km. Peskoff's tabulations indicate that the inter-
electron collision frequency (v ee) is of the order of the electron-neutral collision
frequency (sz); i.e., Voe ™ VeN' Since the fractional energy loss of an electron
per collision (G) with the atoms and molecules found behind a high-temperature
shock in air ranges between 10°3 0 10”2 for electron energies of 0. 5 to 2 ev (cor-
responding to electron temperatures of 5000° te 20, 000°K), the condition A e>>G VeN
is slways satisfied behind a shock with gas temperatures at 5000°K and electron
temperatures of 5000° to 20, 000°K (see Massey and Burhop,7 . 279). It will be
demonstrated in the next section (see Ginzburg and Gurevich, p. 132) that when the
condition Vee >> Gv is satisfied, the isotropic part of the electron velocity distribu-
tion function in a partially-ionized plasma is Maxwellian, even in the presence of a
strong electromagnetic field. This fact permits the establishment of the electron
temperature as a proper thermodynamic variable. If the additional assumption is
made that the gas temperature is not changed by the perturbing electromagnetic
field (a good approximation), then the steady-state electron density may be found

as a function of the various parameters that determine the rate at which electrons
appear or recombine. The rate coefficients for electron production or loss, such
as the rate of ionization for electron impact on neutrals, dissociative recombination,
and three-body recombination are known as an explicit function of electron tempera-
ture for the various constituents of high-temperature air.

Since the predominant electron production and electron loss mechanisms are
believed to be known for a high-temperature shock in air, even when the electron
temperature is greater than the neutral and heavy ion temperature, the computation
of the change in the electron density of the plasma sheath produced by changes in
the electron temperature wili require specific knowledge of the electron temperature
distribution in the slab of plasma. Inthe steady state the electron temperature at
each point in the plasma slab depends upon the rate at which the electromagnetic
field heats the electron gas and the rate at which the electron gas léses energy. The
various electron energy loss mechanisms include:

(1) Elastic electron-neutral and electron-ion collisions.

(2) Ionizing collisions by electron impact.

(3) Collisions between electrons and molecules that involve the excitation of
vibrational or rotational states.

(4) Recombination collisions (dissociative and three body).

(5) Heat transport due to gradients of the difference between the electron
tempersture and the neutral gas temperature. There are two heat transport
coefficients (see Anderson and Goldstein,? p. 77). One transport coefficient
depends upon heat conduction due to electron-neutral collisions and the other
glcpon%)upon heat conduction due to electron-electron collisions Spitzer and

armiY),
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(6) 'l;l:l:tnlou through electron difluliog which involves a term in the energy

ce equation of the form 64k ‘l‘= S —
9rm VEFF e e

On the basis of equilibrium-flow calculations performed by Rotman and Meltz!!
for the electron density and temperature profile behind a high-temperature shock in
air, it may be shown that the various heat loss mechanisms of the electron gas due
to conduction or diffusion are negligible in comparison with losses due to elastic and
inelastic electron-neutral and electron-ion collisions. The model assumed consists
of a plane wave incident on a plasma slab, and owing to the infinite extent of the plane
wave front, heat losses due to electrons flowing out of the region heated by the
electromagnetic field will not be considered. These preliminary facts permit compu-
tation cf the total reflection and transmission coefficient of the plasma sheath for
relatively high-power densities (about 100 watts/cmz) as a function of the amplitude
of the incident plane wave, angle of incidence, and angle of polarization.

One of the first investigations of the nonlinear interaction of electromagnetic
radiation with the plasma sheath surrounding hypersonic re-entry vehicles was con-
ducted by Sisco and Fiskin. 15 In this study, the assumption was made that only the
collision frequency of the hypersonically -produced plasma would change under
perturbation by an electromagnetic wave as long as the field strengths involved were
below the breakdown threshold. However the condition for breakdown may not be
sharply defined in the case where ionization exists prior to the application of high-
power electromagnetic radiation. It is possible that the electron density may change
by a factor of two or three in a plasma layer surrounding an aperture antenna because
of changes in the power level. Such alterations in the electron density will have as
pronounced an effect on the microwave conductivity of the plasma as changes induced
in the electron collision frequency. At power levels at X-band (10 kMc) of the order
of 100 watts / cmz, it is estimated that the electron temperature will change by about
a factor of four (from 5000° to 20, 000°K). This will produce about factor of two
changes in electron density and collision frequency. If the frequency of a plane wave
incident upon a plasma slab is about equal to the average plasma frequency in the
slab (w ~ wp), then there will be little reflection from the first air-plasma interface
and a maximum of energy coupling between the electromagnetic wave and the lossy
plasma. Alterations in the electron density and collision frequency of the order of
a factor of two are capable of inducing 50 to 100 percent changes in reflection coef-
ficient and absorption coefficient.

The method of computing the reflection and transmission coefficients of the non-
linear slab of plasmsa proceeds on the basis of a step-by-step numerical integration
of Maxwell's equations. The approximation consists in replacing the inhomogeneous
nonlinear plasma slab with a set of homogeneous linear slabs. If Maxwell's equations
are written in the form of difference equations, and the step-by-step numerical



integration is accomplished by using backward differences starting on the face of the
slab from which the transmitted wave emerges, then the solution for the field dis-
tribution in the nonlinear, nonhomogeneous slab may be determined by assuming a
value for the amplitude of the transmitted wave. In this scheme the fields are
completely determined at the poimt Z-h, once the fields are known at the point Z
and the dielectric constant is known at the point Z. 'h'is the increment chosen in
obtaining solutions of the difference equations and corresponds to a layer over which
the dielectric constant is assumed not to vary. The dielectric constant at the point
Z inthe plasma slab is found by calculating the effective collision frequency and

the electron density at this point in the plasma. These parameters are determined
once the electron temperature is known. The electron temperature i8 determined
from an energy balance equation for the layer lying between the points Z and Z-h.
The energy balance equation is simply a statement of the fact that, in the steady
state, the rate at which the electromagnetic field supplies energy to the electron gas
is equal to the rate at which the electron gas loses energy to the neutral and ion gas
through elastic and inelastic collisions.

The step-by-step numerical integration of the electromagnetic fleld equations
has been discussed by Penico,12 Stickler, 13 and Richmond“ for the case of a plane
wave incident upon a dielectric slab with the dielectric constant a function of posi-
tion in the direction perpendicular to the interfaces. Most of these analyses start
with the wave equation for the field components. However an advantage is gained
by starting from Maxwell's equations directly, particularly in the nonlinear problem.
Specifically, R.ichmonﬂ14 utilizes the wave equation for the field components E and
H. In his analysis the solution of the difference equation is started by assuming a
value {or the amplitude of the transmitted fleld. Since the wave equation is of the
second order, the field must be known at a second point to uniquely specify the
solution. The field at the position of the first backward difference is usually ex-
panded in a Taylor series with the size of the increment (h) as parameter. Deter-
mination of the field at the position of the first backward difference by a Taylor ex-
pansion is not necessary if Maxwell's equations (first-order equations) are used
directly. It should be noted that the step-by-step numerical integration of the elec-
tromagnetic field equations by backward differences is a method that may be applied
to the nonlinear plasma slab problem only when thermal and particle diffusion from
layer to layer can be neglected. The effects of the boundaries are neglected insofar
as it is agsumed that the temperature and electron density gradiemts in the boundary
layer and at the edge of the shock arc so steep compared to a wavelength that the
boundaries may be represented as plane interfaces.



RS-

g g o - r -

s

3, THE CONDUCTIVITY OF A PARTIALLY JONIZED PLASMA IN THE
PRESENCE OF A 8STRONG ELECTROMAGNETIC FIELD

If an electromagnetic field is impressed upon a partially-ionized gas, the elec-
trons will gain energy from the electromagnetic field by suffering collisions with the
neutral species and heavy ions in such a manner that their ordered oscillatory motion
is changed to random thermal motion. For a partially-ionized plasma, such as
high temperature air (5000°K), the electrons lose only a small relative fraction of
their energy (G) per collision with neutrals and ions even for electron energies up
to 2 ev(Gm10™3 at electron energies of 0. 5 ev and Gw10”2 gt electron energies of
2 ev). Thus it is a good approximation to assume that the velocity distritution
function for the neutral atoms and molecules and the ions remains Maxwellian and
that their temperature remains constant even in the presence of relatively strong
electromagnetic fields.

Initially, in the absence of an externally impressed electromagnetic field, the
electrons are in thermal equilibrium with the neutrals and positive ions behind the
high-temperature shock of a re-entry vehicle (this is true within about 100 mean
free paths behind the shock front). Hence the electron velocity distribution function
f is Maxwellian in the absence of an electromagnetic field and the electron tempera-
ture is equal to the gas temperature T e™ T. Consider a c.w. electromagnetic
plane wave incident upon the plasma sheath with a frequency (w) much greater than
the electron-neutral collision frequency for energy transfer (Gwmld.'8 at T e” 5000°K,
Gy 10'” atT " 20, 000°K for T=5000"K, plp° = 10'3 corresponding to a shock with
free stream velocity = 18, 000 ft/sec at 200, 000 feet). In this case, the relaxation
time for energy transfer between the electron gas and neutral gas (TEN) is much
greater than the period of the impressed electromagnetic wave TEN > T em’ that
the average energy gained by the electron from the electromagnetic field will depend
upon the mean square value of the field. The increase in the average energy of the
electron, resulting from randomization of the electron's oscillatory motion through
elastic collisions with neutrals, will induce changes in the various electron energy
loss processes such as:

{1) Collisions which can excite electronic levels of atoms and/or molecules

(2) Collisions which can excite rotational and vibrational levels of molecules

(3) Ionizing collisions of atoms or molecules

(4) Dissociative recombination of ionic molecules and three-body recombination
collisions with ionic atoms.

In addition to the elastic and various types of inelastic collisions of the electrons

with heavy particles, the effect of electron-electron collisions must also be considered.

Electron-electron collisions result in only a small relative fractional energy loss
per collision

o e
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This is a consequence of the fact that the total collision cross section for electron-
electron collisions is obtained by integrating the Rutherford differential scattering
cross over all angles down to a minimum scattering angle, corresponding to a maxi-
mum impact parameter equal to the Debye length (see Ginzburg, p. .129).

1/2 ,
L ] . | ®)
47N e (k’l‘-i-ld‘e)

Debye length = ¢ o

The fractional momentum loss for electron-electron collisions is of the same order
as the fractional energy loss for electron-electron collisions. Spitzer5 gives the
following expression [Eq. (3)] for the interelectron collision frequency

NelnA

-1
. SEC
e 114 Augesh !

where A = 1/1823 for electrons and £n A is tabulated as a function of N, and 'I‘e.

For a fairly wide range of re-entry conditions, especially in and near the stag-
nation region of vehicles traveling at 18, 000 ft/sec or greater at altitudes between
300, 000 and 100, 000 &, the interelectron collision frequency (v e e) is several orders
of magnitude greater than the collision frequency for energy transfer between the
electron gas and the gas of heavy particles (v e e» Gv). When this condition prevails,
any perturbation such as an electromagnetic wave applied to the partially-ionized
plasma will result in the redistribution of energy ameng the electrons in a'time
Tee * 1/v ce which is much faster than the time for energy transfer between the
electron gas and the heavy particle gas (1/Gv).

Such an effect will have a pronounced influence on the response of a plasma to
a dynamic perturi»tion. The dynamic (time dependent) response of a re-entry plasma
sheath under the influence of high-power electromagnetic radiation has been care-
fully analysed by King.!® King's investigation proceeds from the WKB solution of the
wave squation for an electromagnetic wave incident upon a semi-infinite plasma.
’l‘hc'"vnndity of the WKB solution is restricted to cases where the changes in electron
density (or dielectric constant K) are small compared to a wavelength dK/dZ<<K/A.
The WKB method was developed in connection with obtaining solutions to the
Schroedinger equation. In this class of problems the DeBrognd wavelength is almost

e e iy
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always very small compared to distances over which the potential function varies.
Also, with reference to ionospheric propagation, the criterion for the validity of the
WKB approximation is met for frequencies in the megacycle range and higher. How-
ever the criterion may not always be met for electromagnetic propagation through
the re-entry sheath, where the electron density may vary by ten orders of magnitude
over a distance of about 1 cm with wavelengths in the centimeter range (Rotman and
Meltz“). The WKB solution contains no information on the amplitude of the reflect-
ed wave, because reflection is neglected in the approximation of geometric optics.
Ginzburg” has indicated a modification of the WKB method to include the effects of
weak reflection. )

The starting point in King'sm analysis is the WKB solution for the electro-
magnetic field distribution in the re-entry plasma sheath. The WKB solution is
written in the form

x
E= Eodkah exthino kdx) . (8)

where

2

k® = k: (¢/¢° -i o/weo)

ko swle= 21/A°

wz
€le -1-+—- )
o w+v2

2
Ne° v

m(w 2-0-1!2)

o is the real part of the conductivity and the propagation direction in the direction
of the electron density gradient (x-direction). This form for the field distribution
is then substituted into the expression for energy deposition per unit time in the
plasma (o Ez).

The fraction of the total energy deposited in the plasma which is responsible
for producing increased ionization is given by ftlE2 where { = % /o and o is the |
ionization cross section while o is the total cross section. If this quantity is then
divided by the energy required to form an ion pair in tho'pluma, ¢, the result ylelds
the local rate of growth of electrons due to the electromagnetic field:
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'—a't-“ = ¢0E . 4}

The electron density appears oxplicitfy on the left-hand side and implicitly on the
right-hand side of this equation. King16 has obtained analytic expressions for the
time dependence of density by making a suitable transformation of variables. The
effects of diffusion and electron attachment may also be taken into account, although
the solutions may no longer be expressed in terms of known functions. The implicit
assumption of such an approach rests upon the relation

aN
1ok, 1 Ne
v R R N, &

’

where K is the effective dielectric constant

2 2
w jvlw)ow
K=K, + K =1 -—gBy - ——g—gPe
w +y Wty
2
2 e
w_ =N
p e me,

For the case of a medium with a time-dependent dielectric constant, Maxwell's
equations are:

|

curl-f) R

curl § = eo%-z . (8)

This leads, in general, to a wave equation of the form:

-v’i’a-vwi’nx-z)---’ixié -4
c o c

=I%
2IS
1]
ol
L
o

The WKB approximation is a valid solution of the wave equation only if

Mnl"lI

w >> ot ,
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which permits the terms

czatae czbt

28 o8 . 1 (ﬁ%) 2

to bc neglected and a solution to be obtained in the form E « Aft) Yt The
condmon w > aan /8 implies that the characteristic time for electron density
buildup is much ]ongcr than the period of the impressed field. This condition is al-
most always satisfied for most plasma-microwave interactions. A final point should
be made that no provision for changes in the collision frequency have been included
in the analysis, although such changes may generally be overshadowed by changes

in the electron density. ’

Only the steady-state response of a re-entry plasma shesth to high-power electro-
magnetic radiation will be considered in this report. The question of the relative
importance of the relaxation time for equilibration of energy among the electrons
/v e e) and the relaxation time for equilibration of energy between the electrons and
neutrals and ion (1/Gv) is important from the point of view of the dynamic response
of the plasma to the perturhation of an electromagnetic wave. However, even in the
steady state, electron-electron collisions can play a significant role in determining
the form of the isotropic part of the electron velocity distribution function. The
general form for the isotropic part of the electron distribution function in a partially-
ionized plasma in the presence of a strong electromagnetic field is not always given
by the Margenau 18 expression

v
fo =cexp |- .Mz—z.— , (9
© yr+2eE
2
3mG(rwd)

Wwhere C = a normalizing factor

T = gas temperature

v = electron-neutral collision frequency (a function of electron velocity).

The Margenau expression for the electron distribution function was derived

under the assumption that oloctron-electron collisions are negligible (v, << Gy).
However, as pointed out by Cahn'® and by Ginsburg and Gurevich,® when the tnter-
electron collision frequency is of the order of the collision frequency for energy
transfer between electrons and neutrals (v“" Gv), the form of the isotropic part of
the electron velocity distribution function is given by a rather complex expression
which reduces to the Margenau expression when v _ << Gy andto the Maxwéllian

ee
form when Voo >>Gv.



R

s

Wy W D 5T

o s
i

L e e it Y BN N 12,

13

2.1 The Boltmann Equation for a Partially lonized Gas

The propagation characteristics of electromagnetic waves in a finite layer of
plasma may be described by a complex dielectric constant (or conductivity) which is
& scalar quantity in the absence of a magnetic field. The conductivity (o) is com-
puted by taking the first velocity moment of the electron velocity distribution function:

o-%StVdsv . (10)

Ginzburg” and Molmud?? have shown that Eq. (10) for the complex conductivity
reduces to the standard expression

N ezv N ezw

cxo_+jo, s S -3 (11)
r i m(w"+02) miw +v2)

only if the collision frequency in Eq. (11) i8 replaced by an 'effective' collision
frequency (“EFF) given by Eq. (2) The effective collision frequency, u given by
Eq. (2), is valid only if w2>>y2 . For the low-frequency limit Ww3<< )2 ), the
effective collision frequency is defined differently. At intermediate frequencies, the
right-hand side of Eq. (11) must be muiltiplied by a parameter that is a function of
“’/"EFF' To utilize the exact Expression (10) for the conductivity, the form of the
electron velocity distribution function must be found by solving the Boltzmann equa-
tion.

The full description of a multicomponent system such as a partially-ionized
plasma involves a series of coupled Boltzmann equations for the distribution function
of each component.

of - =
T VL (B TXB) QY B v B ot T B

a“ion &ﬁ_ - El
1+9.39 (fion (mi;;s‘[ E+WxE) - Vv_aion) B, ion, * 2 %on‘ fon,
+ ;qonl v
of =1
V- T = B B (12)
_fl"' r'ny &anionk+ ouj"';tq oy
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where (fi on)g is the distribution function for the £ tB fon constituent, { n is the distri-
bution function for the jth neutral constituent, the subscript e refers to electrons, and
the subscript n refers to neutrals. an represents the contribution to the collision
integral for the distribution function of the m':h type of particles in collision with an
nth type. The Boltzmann equations for the electron, ion, and neutral components are
coupled through the collision integral terms. The usual assumption made in investi-
gations of the interaction of radio frequency or microwave energy with a partially-
ionized gas is that only the electron distribution function changes, and the neutral
and ion distribution functions are assumed to remain Maxwellian at a constant tem-
perature. This assumption is valid when the collision frequency is relatively small
compared to the plasma frequency, the plasma is less than 1% ionized and when

the fractional energy loss of an electron per collision with a neutral is small

G < 102 for electron energles below 2.5 ev for most gases).

The macroscopic fields that appear in Eq. (12) are self-consistent, so that the
electrons do not interact directlvy with one another on a microscopic level (except for
distances less than the Debye length, lD). Instead, the ensemble of electrons give
rise to a macroscopic electromagnetic field which then can interact with the individual
electrons. The macroscopic flelds that appear on the left-hand side of the Boltzmann
equation remain constant during a collision. This implies that, when considering
electron-electron collisions, the sphere of interaction must be less than a Debye
length (see Dmmmonc:l.21 p. 12).

The great majority of papers on the kinetic theory of electromagnetic wave
interaction with a partially-ionized gas neglect ion-electron and electron-electron
collisions (Hohtein,zz Margenau,m‘ 23 Reder and Brovm,24 Allis and Brownzs).
Cahn19 has discussed the effects of electron-electron and electron-neutral collisions
on the distribution function. Ginzburg and Gm'evich8 have clearly indicated the
conditions under which it is permissible to neglect electron-electron and electron-
ion collisions in a partially-ionized gas. Elastic collisions between electrons and
neutrals may be treated in the most straight-forward manner. The expression for
the collision integral for electron-neutral collisions is obtained in terms of the
neutral particle density, temperature, elastic collision cross section, and the zero-
order electron energy distribution function. The derivation of these expressions
usually involves the assumption that the electron suffers only a small chahge in
energy on collision with a neutral (which is not neceasarily true for excitation or
ionizing collisions). Anilze has treated the case where account is taken of recoil
of the heavy molecule under elastic ¢ollisions with electrons. Inelastic collisions

between electrons and neutrals are accompanied by the excitation of rotational, vi-
‘ brational, or electronic levels and also by ionization and recombination. In addition,
charge exchange between ions and second-order impacts are possible, in which the
energy of an excited state of the molecule is transferred to incoming electrons.
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However, an exact calculation taking account of all these inelastic processes would
be exceedingly complex. The cross sections for many of these processes are known
exactly only in a few cases. In this report, the effects of charge exchange and
second-order impacts (inelastic collisions of the second kind) are neglected.

The Boltzmann equation for the electron velocity distribution function for a
partially-ionized plasma (the re-entry sheath) in the abasence of a magnetic field
may be written:

%tt""v'vr“'sﬁ\ﬁ'V'Jf'Bee+IZBei+§:Benj ’ (13)

where E is the amplitude of the externally impressed electromagnetic wave and the
forces exerted on the electrons by the magnetic component of the wave are neglected.
Since diffusion is neglected in comparison with other electron loss mechanisms, the
Boltzmann equation may be solved for the case of a homogeneous plasma within each
section of the plane-layered medium. Hence, the Boltzmann equation may be written:

of L e =. -
wt x_nﬁ vvf By * ; By * ; l?’enj : 14)

Ginzburg and Gurevich® have shown that when the electron energy loss parameter G
is much less than one, a spherical harmonic expansion of the electron distribution
function converges rapidly, so that the expansion may be terminated after the first
two terms

-

1r,v.t) = ; f' F,v.t) ) (cos a) = £+ f,cos a, (15)

where the electric field vector is taken to lie along the Z-axis and « 1is the angle
between E and v.

Using the spherical harmonic expansion [ Eq. (15)] , together with the expres-
sion for partial derivatives

2
) ) . (a) sin’a ( ) )
—c— cos a [— + (16)
(avz Voo vy v o v 9 cos a v
one obtains
of { oP.
of . eE | eE t _, 2 . .
W vv 4P m cosagyr Pty v e e o)
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* df
eE 2 2 d .3
._‘_}v—z Eqv-vf‘+(—as-+-5;1§ dvvlz)cOla+..... . (17)

If Eq. {17) and Eq. (15) are substituted into Eq. (14), and if then the resulting
equation is multiplied successively by P (cos a), P, (cos a), P, (cos a) etc., and
integrated over 27 sin o d a, the resulting chain of coupled equations is obtained

of
o, eE .9_(2 )
at g 2wV ) * B (18a)
of of
eE 2 8 (3 .
- [T#*Wa e ("'2):] B, (18b)
of 1
2.eE[2_ 0 3 8 (4
2 [s"s; (‘&)* aw (v ‘s)]'Bz (18c) )
where
21+1Sr
MR-l LBee"'; Bel+§ B, |'P, (cos @) da
and

dl = 2% sin a da
Since the electron energies will be considered only up to 2 ev, for which G » 10'2
for each of the constituents of high-temperature air, only the equations for fo and
*
‘1 need be considered.

2.1.1 COLLISION INTEGRAL FOR ELASTIC COLLISIONS BETWEEN
ELECTRONS AND NEUTRALS OR IONS

The collision integral may be evaluated by considering the rate of change of
the number of particles in a velocity volume element d3v. This rate of change may
be found by taking the difference between the number of particles scattering into
that volume element and the number scattered out:

* Actually, G = 107! at 2 ev for NO, but the NO concentration in a shock at 5000°K
is less than or equal to 1/10 the concentration of Nz and 02.

s emom g
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Badv » CF @)1@ e 00, 0) a?aadviady
- Crt@rc ote. crataadvaly |, (19)
F(V) = distribution function for scattering particles
f(v) = distribution function for scatterad particles
c = relative speed of particles
5 -9l =15 - W
o = differential scattering cross section
d’a = 2rsine de
© = scattering angle » angle between v-Vandv' - V.
The primes refer to the quantities before a collision and the unprimed quantities
refer to after a collision. By Liouville's theorem
) advadv = advadv .
so that the collision integral may be written:
Cirem t - 2,3 :
B-\ (FO) E") - PV H@)) ¢ od®aa’V. (20)

Am-“ has indicated how the lpperlcal harmonic components of the collision integral
may be evaluated. If the spherical harmonic expansion for f{v) [Eq. (15)] is sub-
stituted into Eq. (20), and use is made of the addition theorem for spherical har-
monics, '

(= Tty &) E‘ @Py @)+ 2] 2 B - BGIcos fxfx(a-i] . (21)

where ¥ = azimuthal angle, then the Boltzmann collision integral may be written

B -; B, P, (cos a)

H
£
%

where

= \3
: B, -SG-%Y—'[[) F@) 1, v) P, (0 * caa’aa’v' -SF(V)l, vIcod?addv. (a2)

R o DR KA <o
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The zero-order term in the spherical harmonic expansion of the electron-heavy
particle collision integral representing elastic collisions may be written

df
las. 2m 1 d 3 2kT
By g v ;;z["”(fo“?;ﬁ)]

ot
-;l,- = ElzGELV (% 32+ w‘):] (23)
v
where m = electron mass

M = heavy particle mass

T = tempersture of heavy particle gas

G = 2m/M+m = relative fraction of the energy loss of an
electron per collision with heavy particle

v sNv Sa(v, 8)(1-cos 0)27sin@de.

Am-“ has derived Eq. (23) on the basis of the assumption that the electron loses
only & small fraction of its energy in colliding with & heavy neutral particle (G<<1).
Also, it is assumed that the molecules recoil under electronic impact and they pos-
sess a3 Maxwellian distribution in velocity.

The first spherical harmonic component of the collision integral representing
elastic electron-neutral collisions may be immediately derived by using the fact that
the magnitude of the electron's velocity changes only slightly during an elastic col-
lision with a heavy particle (v' * v and V' = V), so that

Bflas. . Sc(o, o) cft, (') F(V') P, (cos 8) - £,(v) F(V)} d’0a’v

. -rl(v)Sdawzngvr(\nu-co- 0

= -viv) £,(v) : (24)
where
vse Nch(v. e)(1-cos ©) d’a
where N = neutral particle densaity and v is the collision frequency for momentum .

transfer.
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2. 1.2 COLLISION INTEGRAL FOR INELASTIC COLLISION BETWEEN
ELECTRONS AND NEUTRALS

Inelastic collisions between electrons and neutral particles result in the exci-
tation of rotational, vibrational, and/or optical levels of molecules. For a partially-
ionized plasma consisting of diatomic gases such as oxygen, nitrogen, and NO, the
dominant electron energy loss mechanisms for electrons of about 1 ev or lower en-
ergy are excitation of rotational and vibrational levels. The excitation of rotational
levels results in an energy loss of 1072 to 10'4ev; whereas the excitation of vibra-
tional levels results in electron energy losses of about 0. 1to 0.5 ev. If the electron
energy distribution function is Maxwellian, then ionizing collisions can become im-
portant when the average electron energy is 1/10 or greater then the jonization po-
tential of any stomic or molecular constituent (NO has the lowest ionization potential,
8. 25 ev, of any constituent in high-temperature air). This is due to the long tail at
high energies of the Maxwellian distribution function.

In the present report, electromagnetic fields incident on the re-entry sheath
will be considered with intensities sufficient to raise the electron temperature from
5, 000°K (0. 5 ev) up to 20, 000°K (2 ev). Measurements of the mean energy of electrons
in swarm tube experiments together with Luxembourg (cross modulation) type ex-
periments make it possible to deduce the energy loss for electrons in this energy
range. Such experiments have been performed by Healey and Reed,27 Harriea,za
Hus,29 and I-luxley.30 Table 1 (from Massey and Burhop7) gives the fractional
energy loss of electrons A for the various constituents of air for electron energies
between 0 and 6. 0 ev.

Since, for an average electron, only a small part of the energy is lost below
and up to excitation of rotational, vibrational, and optical levels, the integral for
such inelastic collisions in a molecular plasma may be represented in the form
(Ginzburg and Gurevich®):

of
fnelas. = 1 @ inel 2(kT _o
B, 2 W {GEFF" v (m v +Vfo)} (28)

where GEFF(V) describes the total relative fractional energy loss of an electron per
collision due to excitation of rotational, vibrational and optical levels.

yinel . vS Oype1 (V+ 9) (1-c08 @) aa

and 0, = cross section for such inelastic collisions. It may be noted that the
relative fractional energy loss parameter (G) is known from experiment only as a
function of electron tempersture (’r‘). and not electron velocity.
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However this amount of informstion is sufficient for the present investigation, since
the Boltzmann equation [Eq. (18)] will be integrated over the zero-order distribution
function, which is Maxwellian. If cases are to be considered where the interelectron
collision frequency (v ee) is not sufficiently high compared with the collision frequency
for energy transfer (Gv) to maintain a Maxwellian form for the isotropic part of the
distribution function, then G must be known as a function of electron velocity v.
This functional dependence may be obtained by solving the integral equation for G(v):

¢ my? W (“ o/
mv L1
SG(V) v(v) v’ exp l:-mr: dv = _».7;- —n-f-) G(T W ppp(T,) (26)

where the right-hand side of Eq. (26) is known.

The first spherical harmonic component of the inelastic collision integral repre-
senting electron impact collisions which excite rotational, vibrational, and optical
levels in the molecular plasma may be written in the form:

Blinelu .. vinelul1 @7

where
yinelas o o (alml (v, 9) (1 - cos @) a’a .

and %n el(v. 0) is the differential-scattering cross section for inelastic scattering.

2,1.3 COLLISION INTEGRAL FOR ELASTIC SCATTERING BETWEEN
ELECTRONS AND POSITIVE IONS

The primary assumptions made in the derivation of Eqs. (23) and (24) for elastic
collisions between electrons and heavy neutral particles were: (a) the fractional
energy loss of the electron per collision is small, (b) the electron mass is very small
compared with the neutral mass m << M, and (c) the temperature of the gas con-
sisting of the heavy particles remains constant regardless of the average electron
energy. Hence, Eqs. (23) and (34) for the zero- and first-order spherical harmonic
components of the collision integral may also be used to describe elastic collisions
between ions and electrons when the appropriate expression for the ion-electron
collision frequency is used. The equation

Yion * Nion v (otv. 9 (1 - cos @) a%a

Y ot ¢



governs the functional dependence of the electron-ion collision frequency on electron
velocity, where o(v,0) is given by the Rutherford formula:

2 2
(5 o
2mv2 sin” 9/2

where 0 = pcattering angle and

Ni = particle density of ions = N.

Thus,

2 \2 LHr
Vion ® 2"NyV —g—z) ( -Q-:—‘@-Lol sin 0de
o 2mv *Onin B e/2

4
2
= 21Ne ;;;3- in (X+ cot ominlz) (28)

where om!n is the minimum angle of scattering ch{responding to the maximum im-
pact parameter. Since, as shown by Drummond,” ~ collisions between charged par-
ticles which occur at distances greater than the Debye length are described by macro-
scopic fields which appear on the left-hand side of the Boltzmann equation, the maxi-
mum impact parameter will be taken equal to the Debye length {1, Eq. (8)] :

2
1. tan @ . L (29)
D min/2 mvz
or
2 2
-1 e 2e
) in" 2 tan 3 o d

2
mle mle

Substituting Expression (28) for O nin into Eq. (28) ylields:

224
4 15 mv
e D
"ionM ] 21rNe _ﬂm » in (1 +—T—e ) . (30)
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Bachynski et al.al have derived the expression for the contribution to the con-
ductivity of a plasma by electron-ion collisions, Their computation proceeds from
the formula

4te2N ftlvsdv
%on "~ "I 3.3
[ Je a%aviav

(31)

where the vector E represents the flow velocity in velocity space (the collision
integral is related to E through the relation B = - Vv ’ E). The vector ? is evaluated
by considering the diffusion in velocity space and computing the average of the veloc~
ity change of a test particle after an encounter. The computation depends upon the
form of the electron distribution function. Bachynski et al.al have presented a
treatment somewhat similar to that of Spitzer and Harm, 10 who have included the
effects of electron-electron collisions on the conductivity. Both treatments are based
upon the calculation of a transport coefficient {(conductivity) in the presence of a DC
electric field. The AC conductivity may be related to the DC conductivity by the
approximate formula:

Ne e2

Ne e2 . '
"\®ap

It may be noted that Eq. (32) is valid only if »
may be found by substituting v,

%ac (32)

ion ™ Wion)EFF Where Wionlppp
[Eq. (30)] into Eq. (2):

ion
2 65 €N KTt
®ion)EFF * ’.h/—:" w2 M2 (33)
e

which is valid when w? > I’%FF.
Bachynski et 01.31 have expressed the total conductivity of a partially-ionized
gas (ototal) as the geometric mean of two conductivities — one due to electron-ion

collisions (oion) and snother due to electron-neutral collisions (an):

1 1 1
[ SO SN . . (34)
%total %ion %

This relation is valid, of course, only for the DC case, and is based upon the assump-
tion that the total collision frequency for electrons (v, ,.\) is given by
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Ytotal * vion+ Yneutrals ’ (3%

where Vheutrals is the electron-n;tzxtral collision frequency.

As noted by Shkarofsky et al.,”” in a later paper, a more satisfactory procedure
than the relationship expressed by Eq. (34) exists for the computation of the total
conductivity of a partially-ionized plasma taking into account electron-ion and electron-
neutral collisions. If the expression for Veotal in Eq. (35) is used in the formula
for the first spherical harmonic component of the collision integral B1 * - Viotal fl’
then this expression for B, may be substituted into Eq. (18b) for the first spherical
harmonic component of the distribution function Il. Equation (18b) is then solved
for fl in terms of %‘ v, and Viotal’ This solution is then substituted into Eq. (10),
so that the conductivity is expressed as a *unction of %, the frequency of the impressed
field w, and Viotal’ The electron-electron collisions produce two effects on the
conductivity. First, if » ee >> Gy, than fo is Maxwellian even in the presence of
strong electromagnetic fields. Second, there is a first spherical harmonic compon-
ent of the electron-electron collision integral which introduces a correction to the
total collision frequency appearing in Eq. (10) for the conductivity. This correction

appears in the form (see Ginzburg,” p. 83)

Yeotal ~ Ytotal (1 Vee/¥) - (36)

where v is given by;.‘zq. 3).
Shkarofsky et al.,"“ have computed the electron collision frequency of high-
temperature air as a function of gas pressure and electron velocity by adding the
electron-neutral collision frequencies for each constituent and then adding the ion-
electron collision frequency [ Eq. (30)] to obtain the total collision frequency:

“total * Yion * ; Ny o;tviv. (37

If w3 v, it should be noted that the correction term for interelectron collisions
[Eq. (36)] is appreciable, and should be added before substitution into the expres-
sion for the conductivity, Eq. (10).

2.1,4 COLLISION INTEGRAL FOR ELECTRON-ELECTRON COLLISIONS

Electron-electron collisions are characterized by the long-range Coulomb forces
which result in weak scattering. One of the primary differences between electron-
neutral and electron-electron collisions consists in the iatio between fractional
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energy to fractional momentum lost per collision. For electron-neutral collisions,
this ratio is G; while for electron-electron collisions, this ratio is one. For
electron-electron collisions, both the energy and momentum are changed only slightly
per collision, where the fractional energy loss of an electron per collision (G e e) is
given by Eq. (4).

An important consequence of the small change in energy and momentum of an
electron in electron-electron encounters is the possibility of representing the col-

lision integral as the divergence of a particle flux in velocity space (the Fokker-
Planck expression): : ‘

B=- vv -3
where the particle flux density is given by:
i =3 ((cavore, o 4@ 1) - 1@ 1) dPaa’y e
c=|v- V|
AV = V' -V .

Since the velocity of an electron changes only slightly during an electron-electron
encounter, the difference in the distribution functions before and after the collision
may be written: '

10 10 - 1@) 1) = BV - TFO) 1@ -[Av - T, 401, 39)

where AV = V' - v and AV = V' - V. If Eq. (39) is substituted into Eq. (38) and use
is made of the fact that o{c, ) has a maximum at @ = 0*, then the particle flux density
may be written:

i- .‘%e- ( adv v.,(c)(c'[f(?) ¢ IO -1 7"7(;)1
+ 2 (@) V@ - 1@ V;?(-v')]} (40)

- -
where ¢ =v -V
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Ginzgburg and G\u'evlchs have shown how Eq. (40) for the particle flux density
may be used to derive the zero-order spherical harmonic component of the electron-
electron collision integral:

B:' - --’-:,- -5%— 3

where terms of order ti have been neglected compared with terms !:. Here,

dr v _(v)
Ay s —= (7 v av
‘ *'o

4z v_ (V)
Aylv) = —R8— [Sw Vi, (V)aV + vaer W dﬂ

The collision integral B:° identically equals sero when fo is Maxwellian, .
The first-order spherical harmonic component of the electron-electron collision
integral may be obtained directly from Eq. (24):

' - (vl)
5P« & (oo § 1,00 + £,V

v

) A\
§(v v § t (vil a%ga®kady (42)

where 0 is the angle between the relative velocities before and after the collision:

R

c+V-v
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d%0 = 2x sin 0d0

d%k = 27 8in Bdp .

B is the angle between vand V (in the laboratory frame). In the center-of-mass
reference frame, the relative velocities of the two particles (before and after the
collision) are equal in magnitude and opposite in sense: each particle in the center
of mass having a velocity equal to ,/c /. As a result of conservation of momentum
and energy fS'] = /c/and V' + V' =V + V. The velocity of the center of mass is
equal to ,(V +V). Inthe laboratory reference frame, the kinetics of the electron-
electron collision may be represented by the three vectors: cravyr. v‘, which is
the relative velocity of the two electrons before the encounter, ¢ =V -V, whichis
their relative velocity after the encounter (equal in magnitude to their relative
velocity before the encounter, but rotated by the angle 0), and the vector

2V +v=V+v,

which is the sum of their velocities, and remains fixed in magnitude and direction
before and after the encounter. o(c, 8) is given by the Rutherford formula. Ginz-
burg” has evaluated the vector integral represented by Eq. (42), and demonstrated
that the result may be written:

14
Bl® =- 2 viw (43)

wherev = v» en + Vion' This result is noteworthy, for it leads to a correction term
for the total collision frequency: the sum of electron-neutral and electron-ion col-
lision frequencies must be multiplied by the factor (1 + vee/w) when Eq. (10) isused
in the calculation of the conductivity.

2.1.5 COLLISION INTEGRALS FOR IONIZING AND RECOMBINATION
COLLISIONS

For most gas discharge phenomena, such as arc and glow discharges, the
primary electron production mechanism is ionization of neutrals by electron-impact.
B«:md34 has found that electron-impact of neutrals is the chief ionization process
behind shock waves in noble gases. On the basis of ionization cross sections of
Nz, 02, and NO deduced by Massey and BurhOp'z from data taken by Tate and Smith, 85
Lin and Tenre have computed the specific jonization rate due to electron impact
on the constituents of high-temperature air as a function of distance behind a normal
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one-dimensional shock. By examining the relative importance of various electron
production mechanisms behind strong shocks in air, Lin and Teu'e‘ have demonstrated
that electron-impact is a relatively inefficient process compared with atom-atom and
atom-molecule collisions. However, if in the presence of an electromagnetic field

the electron-distribution function remains Maxwellian and the electron temperature
becomes equal to or greater than 10, 000°K (1 ev), then ionization by electron-impact
must be considered. The dominant electron lu8s processes are dissoclative recom-
bination (with positive molecular ions) and three-body recombination (with positive
atomic ions).

Margenau23 has considered the collision integral representation for ionization
and recombination collisions. To obtain an explicit expression for the ionization
collision integral, it is necessary to make an assumption regarding the division of
energy between the two electrons after the ionizing impact. Margenau®” assumes
that the energy is divided equally (note that Peskof!6 takes into account the case
where one electron after the ionizing collision comes off with zero energy):

2-2v2+u

v') 4

vidv' = 2v dv

where v' equals the velocity of the incident electron, u, = F‘/m and Ei is the ioni-
zation energy. Margenau expresses the collision integral for ionizing collisions by
electron impact on a neutral constituent with a particle density (Nj) in the following
form:

c v Bioniz

o o

4rvidy = 47N |:2 " e Pave (Tt o v3d{| (44)
° § vy © ionj vo © 1onj

Here, 0y, is the ionization cross section for the ju‘l neutral constituent. The first
integral in Eq. (44) represents the production of two electrons with velocities less
than v due to an impacting electron with velocity greater than v. The second
integral represents the appearance of one electron due to ionization with an impact-
ing electron having a velocity less than v. When Eq. (44) is integrated over all
velocities, the totel rate of electron production due to electron impact on the jth
neutral constituent is given by:

dN 0 C ]
-t . iondz , 2, . 3
(dt )j ( Bo 4rv-av “Nj '("o fo "ionj vidv . (45)
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Lin and Telre‘ have written the expression for the rate of electron production
in terms of the electron energy € =gamv’:

dN v 2 o '
(ﬁ)j =N, (-'—:‘) (ﬁe—) N, (‘; exp(ﬁf—e) °ionj(‘)‘d‘ (46)

1

where Wu is the threshold energy for the ionization cross section of the ;|th con-
stituent, and {  is assumed to be Maxwellian:

\ m ‘mvz .
f =N kT) exp (-zwe—) " (47

Since NO has the lowest ionization potential of any constituent (equal to 9. 25 ev) and
the maximum electron temperature to be considered will be 20, 000°K (2 ev), kT, is
always much less than the threshold energy for ionization (Wu) so that an asymptotic
expansion of Eq. (48) may be made:

12 |
dN 8kT -W . .
i
(3?‘) j B Ne( me) Ny exp ( l?lle) Wiy ic:mj W,y (“48)

where o, (Wij) is the slope of the ionization cross-section curve vs energy at the
threshold energy. By examining the curves of ionization cross section vs electron
energy given by Massey and Burhcp7 for N,and 02. Lin and Teare4 conclude that, {or
these molecules, ‘

2, . 10~ 16
°i'onj (Wi’) W!j mral =0.87X10 7 em

where a  is the Bohr radius.

Since the ionization cross sections vs electron energy curves for-NO, N,, O,,
and the noble gases all exhibit the same shape (exceépt for a displacement in the
threshold energy), Lin and Teare take

' -1
"ionj (W) Wiy = 0.87 X 10

o oL

for the constituents N and O also.
The total rate at which electrons disappear due to recombination with positive
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ions of particle density Ni is given by an expression similar to Eq. (45):

_[9N, . S' precomb . 2.
at 5 o ©

o 3
= 41Ni So ‘o ani (v) vidv

3/2 2
= 4rN N, (2’ ) Sw (v)exp( e)vsdv (49)

where N, = particle concentration of i‘h conatituent of positive ions
and r = recombination cross section for ith ion constituent.

The isotropic part of the electron distribution function is assumed to be Maxwellian,
80 that the rate of disappearance of electrons due to recombination with the ith con-
stituent of positive ions is expressed as a function of electron density (N ). positive
ion density (Ni) and electron temperature (T ). Now, the relction rate for a two-

body interaction such as dissociative recomumtion (e + XY = X + Y) 18 defined as:

e B[] o

By examining Eq. (49) and comparing it to Eq. (50), it may be noted that the reaction
rate for dissociative recombination is a function only of the electron temperature.
This important result is a consequence of the fact that the electron velocity is much
greater than the velocity of the heavy ion. The most general expression for a reac-
tion rate, which includes the case where the electron gas is not necessarily in ther-
mal equilibrium with the ion gas, may be written in the form:

N
3y 48
S5 k NN, = f‘('z(v.mv‘)o(vr)vra Vv (51)

where V " electron velocity
V! = jon velocity
Vr = fon-electron relative velocity.

Because the electron mass is always much less than the ion mass, Vr sV e Hence,

K - .V“"-’ v vy, . 2)
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Lin and Teare" claim that the predominant electron production mechanism be-
hind strong shocks in air is atom-atom impact. Several of the most important reac-
tions include:

(a) N+O+2.8ev~-NO +e

+

(b) N+N+58ev—-N, +e

{c) O+O0O+68.9ev+-0, +e . (53)

N+ N

It may seem surprising that reactions (a), (b), and (c) are more important for elec-
tron production in air shocks than ionization by electron impact, since electron im-
pact was found to be the predominant mechaniam (several mean free paths behind the
shock front where an appreciable electron concentration has built up) in Argon shocks
(Bondu). The reactions [ Eq. (53)] are efficient electron producers, even though
the average kinetic energy of the atoms ias considerably less than the energy of the
endothermic reactions, because the presence of crossing of the potential energy
curves of the colliding atomic system lead to a large cross section. However, direct
electron impact on neutral constituents will start to compete with and even predomi-
nant over neutral-neutral impact, as an electron production mechanism when a high-
intensity electromagnetic wave is impressed upon the ionized flow field. From an
analysis of potential energy curve crossing, in conjunction with a somewhat heuristic
curve-fitting procedure, Lin and Teare arrive at an estimate for the forward reac-
tion rate, (a) of Eq. (53). The equilibrium constant is then determined from the
partition function. The assumption that the detailed paths of the atomic states are
the same in the forward and backward directions (probably not a justified assumption,
see Biondi‘z) permits Lin and Tea.x'e4 to write the dissociative recombination rate
corresponding to the reverse reaction (53a) as:

= KEQ.

" -E—f (54)

k

where k‘ is the forward rate constant
kr is the reverae rate constant
KEQ is the equilibrium constant.
For 'l‘e < 104 *K, Lin and Teare arrive at a dissociative reaction rate

K L3x107 're‘:”2 cm®/sec . (5)
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The rather fast rate for dissociative recombination predicts that k(:) = 6X10° 7cm3/ sec

at T = 300°, which appears to agree with the rate coefficient of 2x1078 deduced by
Doering and Mahan‘a from photolysis experiments of NO. This piece of experi-
mental data, together with Sugden's 4 observation at flame temperatures, forms

the basis of Lin and Teare's acceptance of Eq. (55) as the correct expression for the
dissociative recombination coefficient for NO'. Unfortunately this particular choice
of temperature dependence is unrealistic on physical grounds. This may be seen by
writing Eq. (52) in the form:

32 e 2
2 _m__ 3 =mv~
k = 4x (2'“;) So o(v) v exp(zwre> dv

where the electron velocity distribution function has been assumed Maxwellian. It
may be noted that Eq. (52) and Eq. (55) are compatible only if the velocity-dependent
cross section assumes the form:

olv) = 5-(3!)

v

which is not plausible from a physical point of view, especially since the cross
section must assume a finite value as the electron velocity approaches zero.

In the present analysis an accurate knowledge of the dissociative recombination
rates corresponding to the reverse reactions, (a), (b), and (c) of Eq. (53), is neces-
sary not only for the computation of the steady -state electron density achieved in the
re-entry plasma sheath under the influence of high-power electromagnetic waves in
the microwave range, but also the electron temperature must be determined from
an energy balance equation by a procedure to be outlined in Section 2. 3.2. The
terms in the energy balance equation which represent energy loss of the electron
gas due to dissociative recombination involve derivatives of the recombination rate
coefficients with respect to electron temperature. The T;s,z temperature depend-
ence for the dissociative recombination coefficients of the reverse reactions (53a,

b, ¢), as quoted by Lin and 'I‘eu'e,4 predict a zero energy loss by the electron gas
on dissociative recombination; a result which is not realistic from a physical point
of view. Since there is a paucity of experimental data on dissociative recombination
coefficients over extended temperature ranges, the procedure to be adopted in this
report will consist of assuming a functional form for the associative ionization rate
[Eq. (53a)]), and then making a least-squares fit to the experimental data of Lin's
determination of the associative ionization cross section for 02 - N2 mixturel.‘s
The dissociative recombination rate will then be determined from Eq. (54) (Section
2,3.2).
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The recombination of electrons with the positive atomic ions 0+ and N+ will
proceed primarily by the process of three-body recombinations. Radiative recom-
bination will be neglected. The concentrations of ot and N become appreciable at
distances of ten or more mean free paths behind the shock front (see Lin and Teu'e“).
In the absence of electromagnetic field, the chief mechanisms for production of N
and o' ions are atom-atom and atom-molecule collisions:

O+M-M+0"+e (56a)

N+M~-M+N +e . (56b)

Unfortunately there is at present no reliable experimental information on the rates
of reactions of Eqs. (56a) and (56b). Even though Lin and Teare? indicate that esti-
mates of the three-body electron-ion recombination coefficients based on the clas-
sical Thomlon38 theory yield rates that seem to be several orders of magnitude too
large, calculations based on the Thomson theory will be utilized in this report for
want of more accurate information.

Massey and Burhop7 have derived the three-body electron-ion recombination
coefficient by computing the total probability that an electron will suffer a collision
with a neutral, lose most of its kinetic energy, and simultaneously remain within a
distance 'ro' of a positive ion. 'ro' is the maximum distance of electron-ion separa-
tion for which the two particles can describe a closed orbit:

r,=—g (56)

where v = electron velocity, which is much greater than the ion velocity. The Thomson
cross section for three-body electron-ion recombination is:

g = demly . (57

where A(v) = mean free path for electron-neutral collisions. Using the fact that the
electron-neutral collision frequency v(v) is given by v(v) = v/A(v), the rate of dis-
appearance of electrons due to three-body electron-ion recombination is given by:

dN
R ( dt!) - S’. B:ecomb. “vz dv
i o
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= N,N (mk'l‘ ) &b % Nox - So [z:Gj(v)uj(v)) :la exp(ZkT )dv,

where G (v) is the fractional energy loss of an electron in colligions with the jth
neutral constituent

and v,(v) is the electron collision frequency for collisions with the jth neutral con-
stituent.

Eachenroeder37 has calculated the three-bhody electron-ion recombination co-
efficient according to the Thomson theory, but has misinterpreted G as the frac-
tional energy loss of an electron for electron-ion collisions, instead of electron-
neutral collisions. For a given neutral species, G(v) may be computed by solving
the integral Eq. (26). The collision frequency v(v) may be computed for each species
by using the total cross section vs electron energy curves as tabulated by Shkarofsky
et al. The relative concentration of each neutral specie may be found from Figure
4. 1 of the report by Bachynski et a1.35 It should be noted that Eq. (58) is a generali-
zation of the Thomson three-body electron-ion recombination formula for the case
where the electron temperature is not necessarily equal to the gas temperature and
the role of the third body is played by a mixture of neutral constituents.

2.2 Solutions of the Zero Order and First Spherical
Harmonic Components of the Boltemann Equation

The zero-order and first spherical harmonic components of the collision integral
which appear on the right-hand side of Eq. (18a) and (18b) represent the sum of all
types of electron collisions:

B, = B+ Bli¢l 4 plo" . p2° (59a)
= B+ pitel 4 plon, pte (59b)

Substituting Eq. (59a) into (18a) and (58b) into (18b) yields:

4
S, eE & 2y, L _a.ﬂzm,, +=G,,) 2[k'r +v,;]}
& vaz v 1 2"2 8v M Tion

(60a)

A1 efal -9 ioniz | nrecomb.
+5 {2 [ayomt, + a0 ]}+ Blo™* 4 B



35

8t

1,eE o __ . -ee s
at + m 8v W+ onn) ?1 w v+ an) f1 (60b)

where v = % Nj fv “j (9, v)(1-cos9) dzﬂ

N. i8 the particle density of the jth neutral constituent and aj is the cross section
for elastic and inelastic scattering.
The term

af
i)
-~%3;<inA(v)vf+A(v) >

is of the order (veef o)' Hence. the form of the function fo depends upon the relative
magnitude of the parameters Vee and Gv.

The condition Vee >> Gv is sufficient to guarantee that {o be Maxwellian, even
when ionizing and recombination collisions are present for the conditions considered
in this analysis. These conditions include the facts that (1) the plssma is less than
0. ! per cent ionized, and (2) the fractional energy loss of an electron per collision
G is always less than or equal to 1072

Ginzburg and Gurevich8 define a strongly ionized plasma as a plasma for which
the condition Vee >> Gv pertains; and a weakly ionized plasma as one in which the
condition Ve << Gv is satisfied. Uader the assumption that mez and Br ecomb
are zero, he Boltzmann equation for the isotropic part of the dxstx 1bution function
[ Eq. (60a)] may be solved for the general case (vee = Gy) by f1:‘he method of suc-
cessive approximations. As noted by Ginzburg and Gurevich, this method converges
rapidly because variations in fo cause only small changes in the parameters Al and
Az [defined by Eq. (41)]. In the first approximation, a Maxwellian distribution
function

s Y 3R 27\
f =N st “my 61)
00 e \‘21??@' /' (2kT )

is substituted into Eq. (60a). By a method to be described in detail in Section 2. 3,
the electron particle density is found by taking the zero-order velocity moment of
Eq. (60a) and the electron temperature is obtained by taking the second velocity
moment. Then, the second approximation to Eq. (60a) may be written:

v vdv !Zlei + M + 2 A ol
=C expig - =3 (82)

2e2E2v o
kT /m EGV +~———v r)*' ——-<-—+2A
[: 1" M o 3m (w2+v ) :LJ
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where v = (ven + "ion)(l + vee/w) and C is a normalizing constant. Here,

kT
A5t 83Ky o [ - Fry exp(-yzil

where

() = %Sy exp(-n2) du (error function)
°
[ W2
y v \21'?1“3)

In the derivation of Eq. (62), it has been assumed that 8f oo/ & = 0 (steady-state
case, w >> ijj). An expression for f. has been obtained from Eq. (60b), where

tl has been assumed proportioxlxgl to 8 . This result was first obtai:ed in a some-
what different manner by Cahn" " and later by Ginzburg and Gurevich.

Equation (62) is the most general expression for the electron velocity distribu-
tion function in a partially-ionized multicomponent plasma (in which ionizing and
recombination collisions are neglected). For positions on a blunt-nosed re-entry
vehicle's surface at distances of two or three nose radii back from the tip, particu-
larly for vehicles traveling slower than Mach 16 at 200, 000 ft, the temperatures
and pressures behind the shock are such that » ce ™ Gv. For this case, Eq. (62)
should be used in calculating the electrical transport properties (conductivity) of
the plasma. However, in this report, only regions in and near the stagnation region
of re-entry vehicles at 200, 000 ft and traveling at about Mach 16 or greater will be
considered, for which v ce >>Gv. Inthis case it may be shown that Eq. (62) reduces
to Maxwellian form (fol = ‘oo)' For the other extreme (vee << G») it may be shown
that the general expression for the isotropic part of the distribution function reduces
to the Margenau form [Eq. (9)] . Only for the case » ee >> Gv is the computation
of the changes in electron temperature, electron density, and collision frequency
due to the prezence of an electromagnetic field relatively straightforward, because
the ionization rates, recombination rates and fractional energy loss parameters are
known directly in terms of electron tempersture.

The solution of the equation for the first spherical harmonic component of the
electron velocity distribution function [ Eq. (60b)] may be written:

of
7 .. 1 Y
f m [jw + (v + yion)(l + v"7w)] v (63)
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Utilizing Eqs. (63) and (10), it is possible to find an expression for the AC con-
ductivity of a partially-ionized plasma in terms of the isotropic part of the electron
distribution function (assumed to be Maxwellian in this case), the frequency of the
applied field (w), the total electron-neutral, electron-ion, and interelectron collision
frequencies, and the electron density:

- A
==L S‘vfd3v=3- . d3v
v
=e -.-.' Ie— 4' ® 3 .
E S' v, V) 27 sin 8dOvdv o ('3")8; f,vidv (64)

where ?1 lies along the E field, taken along the Z-axis. Substituting Eq. (63) into
Eq. (64) yields:

-ul
8e’N Fps vl + Yoo lw) ute ™ au ) 4 'uzdu j
° Wi m ( 7. 2 P - go{ T2 z|) (69
-0 w'+ v 1+ v Jw) o wiH Y 1+ /w).J
ee ee
where
viv) = Z NJ. aj VY
m
u = v
2k'll‘e
w) e4 r/llz) mzv4
v (v = 2N In| .
ee e m2v3 \ e4

The conductivity is related to the dielectric constant (MKS) through the relation:

[
K=1+ -j-“Te-o . (66)

Typical parameters for regions in and near the stagnation region of blunt-nosed
B re-entry vehicles at 200, 000 ft at Mach 16 are:

12

Ne w5X 10" ¢ elec/sec

"’p ~ 10!} rad/sec

R ARG IR 3 S 1 1 v B
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v 5 X 109 coll/sec

9
Vee ~ 10” coll/sec
G w~5x10°°
Vee = S50Gy

For the case of a monochromatic plane wave incident on a slab of plasma (having

the characteristics of the re-entry sheath), most of the electromagnetic energy will

be coupled into the plasma only if the frequency of the plane wave (w) lies within a
factor of two or three times greater than or less than the plasma frequency w_:

w /3 <w < 3w . Otherwise, most (90 per cent or more) of the energy will be either-
reflected from the first interface or transmitted through the slab. However, since

the nonlinear properties of the plasma sheath (changes in electron density and col-
lision frequency) will be manifested only when there is appreciable coupling between
the electromagnetic wave and the plasma, the following conditions will pertain to the
range of parameters where maximum nonlinearity occurs:

w2> 2
and v ee/c«.v <«<1,
This implies that the dielectric constant may be written in the form:
w? VEFF w2
K‘l'—%'j(—'w——)"% ©7
w W

where vpoo is c?eﬁned by Eq. (2):

CNE (m)? 4 _,m,z)d
VEFF :Nf(k'l‘e) g"“""e""(m; v

and 2
N e

ws =€ .

P me
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Hence, for the high-frequency case (o.:2 >> vz) the total effective collision frequency
is the sum of the effective collision frequency between electrons and neutrals and the
effective collision frequency between electrons and ions:

v ={v_) + (v, )
EFF e pew ion EFF

where ‘vion) is given by Eq. (33):
EFF
2
-~ N.e /KT ¢
8z e e D
(v, ) - tn )
lon'ppp “3m ®T, Y’ T g2

Thus Eq. (67) for the dielectric constant will form the basis for the computations
of the nonlinear transmission characteristics of the re-entry plasma sheath. The
parameter (v en)EFF may be calculated from a knowledge of the electron temperature
Te' electron density Ne' and the concentrations of the neutral constituents N;, to-
gether with their respective cross sections o,. The concentrations of the neutral
constituents are calculated from the graphs of the total relative density (p/p o) pro-
file and gas temperature (T') profile behind the shock front found in the AFCRL
report by Rotman and Meltz11 and the curves of the relative concentrations of the
neutral constituents 02. N2' O, N, and NO plotted as a function of p Ip and T
located in the report by Bachynski et al.3 (Flgure 4.1). The total cross sections
for electron scattering o,(v) may be found in the report by Shkarofsky et al. 32 for
the various con.stltuents 02. N2, N, O, and NO plotted as a function of electron
energy (-2 mv ) The procedure for the determinationof T e and Ne at each point
in the plasma slab will be discussed in Section 2. 3.

2.3 Particle Conservation and Energy Conservation:
The Zero and Second Velocity Moments of the Bolttmann Equation

2.3.1 THE STEADY-STATE ELECTRON CONCENTRATION

When v ee >> Gy, fo is Maxwellian and an expression for t2he electron density
may be obtained by multiplying both sides of Eq. (60a) by 4xv“dv and integrating.
The following expressions are the only nonvanishing terms which result from the
integration:

2 aNe

-9-3- ( fo 4xv

dv = (688a)
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)y S‘:B?““ 4rviav = 4x TN, f:to “lon, viav

-Ne(m:f\)w TN exp (-—%L) © wal (68b)

dissoc. recomb. 2 o 3
Z S:Bo 4rvidv = 4x Z Ni‘(‘o fo aDRi(v) vidv

32 (e g
- 4N TN, (;me—) ‘(‘o "D, exp(-iﬁ‘i-)vsdv

= N LN, k(T,) (68c)
3, c‘a:'“'“"”dy recomb. 4ro24v = N, (%3) 7% o (Wl )3/2 (684) .
‘0 e

- 2
“(ZN)) S:B: Gj(v) vj(v)]:‘ exp(—iﬁv—) dv.

Equations (68b), (68c), and (68d) have been derived in Section 2. 1. 5. Since, in the
steady state, the electron density is equal to the sum of the ion densities (N e" ENi),
the zero-order moment of the Boltzmann equation for the isotropic part of the dis-
tribution function may be written:

dN dN, 8kT_\12 -w, .
2
= L& "N (_me) LYy o= (ﬂ%) (rag) - Ny LN, ky(T,) €9

(_g 6/ 1 ¥ N 1 -mv>
- Ne 3) 2% e \_‘5“: (ENi) ‘o(mjvj)-;‘ e m;— dv.

It should be noted that Eq. (698) does not include the effects of electron production
resulting from 'external' agencies, such as photoionization, and neutral-neutral
impact. \ . -

On the basis of Lin and Teare's investigation, the examination of the many
possible electron production and recombination mechanisms (such as atom-stom
and atom-molecule impact, electron-neutral and electron-ion impact, photoioniza-
tion, electron-neutral attachment, dissociative recombination, and three-body recom-
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bination) indicates that the following reactions are the predominate processes in the
presence of an electiromagnetic field which raises the electron temperature from 0.5

to 2 ev:

1H+0- NO + e (1
N+N=N; +e (2)
0+0~0; +e (3)
X+N~-N+X+e (4)
X+0-0'+X+e (5)
NO + & = NO' + 2¢ : (6) . (10)
02+e-O;+2e 7
N2+e~N;+ze (8)
N+e—=N +2e (9)
O+e~0" +2.¢ (10)
PP T e +
N, =N +0" + N, +0,+ NO™ . (§8))

Then, the rate of production for each ionic specie is given by the expressions:

+
dmvo') | . *
4mo ) ke, (O) + Ky NOYN,) - k. (NO )N,

AN)
dt

2 +

+

— k,s(m’ +ky O -k, (O (1)

aot . +
UG-k, 0001 + )OI -k, OO
av') L. 100

UL -y, 000041y OO -k, ICON) .

b

Using particle conservation, charge neutrality, and the lt‘uw.:l'tnte condition

IS P e
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aN
—e . 4 =
(m at =Ny >'

an equation for the steady-state electron density may be obtained from expressions
(71):

jkion N ktom ! k‘N -2
e e B
A Ty

where k}°n r~fars to the rate of ionization of neutrals by electron impact.

Y2 -w
B8kT f l
i '
Nj kf;’“ = ko'-‘-‘n—°) N, expkwr >(n ) .

where N_ isthe particle concentration of the j‘h neutral constituent. The relative
concentrations of N, O, N,, 02, and NO as a tunc;lon of p/p and gas temperature
T are taken from Figure 4. 1 of Bachynski et al."~ The ionization potentials of these
constituents are given in Table 2:

TABLE 2
-
| Wi (ev)
NO 8.5
| t
. 0, 2.5 |
! N, 18.7
' N 14.5
) 13.6

The relstive density (plpo) and temperature profiles aloag the line located at
45° with respect to the axis of the hemisphere cylinder are given in Rotman and
Meltz. " These profiles were determined for equilibrium flow conditions in which
the boundary layer is neglected. The nonlinear electromagnetic transmission
characteristics of the re-entry sheath computed in this report will be based upon
the calculations presented in the report by Rotman and Meltzu for the line located
at 45° with respect to the axis of the hemisphere cylinder.
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The forward rate for reaction (1) will be obtained by taking a theoretically de-
rived expresasion for the associative ionization cross section and making a least-
squares fit of this functional form to the experimental data of Lin.“" This procedure
will be explained in detail in Section 2. 3. 2 in connection with the energy los8s of the
electron gas in dissociative recombination. This will give the expression for k; .
The expression for the dissociative recombination coefficient k,l will be obtained
through the equilibrium constant

kfl
k B e———
T K?Q

where K2Q = (1.4 % 10787 + 1.2 x 1071272 + 1.4 % 1071873) exp (-32, 500/T).

For want of better experimental data, it will be assumed that the dissociative recom-
bination coefficients of the reverse reactions 1,2, and 3 will all be equal:

k =k =k_ .
ry Ty T3

Then the forward-rate coefficients for the associative ionization reactions (2) and (3)
will be determined from their respective equilibrium constants:

k, = KE9«x
f2 2 ry

x, =K k
13 3 ry

where the equilibrium constants for reactions (2) and (3) have been obtained from
the partition functions (Lin and Teare‘):

KPR . (3 x 1078 + 4x 1071372 4 1071503 - 5% 107074 - exp(-67, 300/T)

KER x (1.6 X 1087 + 1.2x 1071212 + 3.5 x 107 187%) - exp(-80, 100/T) .

The forward rates for reactions (4) and (5) were estimated by the simple col-
lision theory presented by Box-tner39 and tabulated in the report by Atnuah:‘o
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1 N,
(Nj ‘ k‘j)
W MOk '

EQ
@ oM K3k,

EQ
@ ©O K%,

@  com 486 X 10~ 21¥exp(-333, 000/RT)
®)  ()0) 4 62X 10~ 2Thexp(-313, 000/RT) .

Lin and 'I‘emre‘l have pointed out that there is no direct experimental data available

in the literature inr the forward rates (4) and (5). The backward rates may be

computed on the basis of the Thomson theory. It should be noted that the terms

(N;)k};I , which appear in expressions (67) for the electron density (N e), all play the

role of a constant. These terms are constant for they are functions only of the .
neutral concentrations and the gas temperature (and not electron temperature).

Both the gas temperature and the concentrations of the neutral constituents are as-

sumed to be unchanged in the presence of the electromagnetic field. This is a good -
assumption because the degree of 1onintion of the pluma sheath is between 0.1 and

0.01 per.cent or less ‘(plpo 1073 to 10°2 » Ny %10 12 or 1013 elec/cm ).

The terms k, in Eq. (72) refer to the backward rates of reactions 1 through 5.
The backward rates 1 through 3 refer to dissociative recombination. Since the
temperature dependence (Te'an) of the dissocistive recombination rates correspond-
ing to the backward rates 1 through 3 as given by Lin and Teare 1s iradequate for
the purposes of the present analysis because it predicts zero-energy loss of the
electron gas on dissociative recombination, the dissociative recombination rate for
the reverse of reaction 1 will be determined by making a least-squares computation
to be explained in Section 2. 3. 2. The dissociative recombination coefficients cor-
responding to the reverse reactions 1 through 3 will all be assumed equal. The
backward rates of reactions 4 and 5 refer to the Thomson three-body recombination
coefficient, generalized to the case of a multicomponent plasma where the electron
temperature is not equal to the gas temperature { Eq. (88)]: .

k, =k -( 1 )Sﬂ [ G, (viv, (v) oxp(mv dv
s Tp m'; AR ] _l' ]Pl';' ’
Gj(v) is the fractional energy loss of an electron per collision with the jth neutral .

constituent. The parameter G is usually determined as a function of electron

e e s e s 0o e ww o - [,
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temperature (Te)' and is listed in Table 1 for various gases. Notice that the three-
body ion~electron recombination rates [ Eq. (58)] do not have to be calculated by -
first finding G(v). This would involve solving the integral Eq. (28) for G(v) for
each constituent, and then substituting the result into Eq. (58). A much more ele-
gant technique consists in taking the right-hand side of Eq. (28) Gmown for each
constituent) and integrating four times with respect to electron temperature. This
will yield the correct form for the generalized Thomson three-body recombination
rate:

8 T
-3/2 12
kr4 = krs = Te (2—3—:° ) z: Soe'l (o “ ( ( w G,(w)v (w)dvdvdudl.

The effect of charge exchange has been neglected in the derivation of Eq. (72) for the
electron density. This mechanism appears to have a relatively small effect on the
total electron concentration. Under the action of the charge exchange mechanism,
the relative concentrations of the various ionic species may change. This may
produce a change in the total electron concentration, because the electron-ion re-
combination rates are specie dependent.

2.3.2 THE ENERGY BALANCE EQUATION

When the relaxation time for energy transfer between the electron gas and the
neutral gas is much greater than the period of & monochromatic electromagnetic
wave impressed upon the plasma (g, * Gl-; >> T = 27/w), then the electron gas will
no longer be in thermodynamic equilibrium with the neutral gas but will achieve a
temperature that depends upon the mean square value of the impressed field. In
the steady state the temperature of the electron gas is determined from an energy
balance equation. This energy balance equation, obtained by taking the second
velocity moment of the Boltzmann equation for the isotropic part of the distribution
function [ Eq. (60a)}, is an expression of the fact that in the steady state the energy
acquired by the electron gas due to ohmic heating by the electromagnetic field is
equal to the various electron energy loss processes. The electron energy loss
processes for a multicomponent plasma include:

{1) Elastic electron-neutral collisions
(2) Elastic electron-ion collisions

(8) Electron-molecule collisions which excite rotational, vibrational, and
electronic levels

~ {4) lonizing collisions by electron impact on neutrals
(5) Ion-slectron dissociative and three-body recombinstion collisions.
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All of these processes will be taken into account in the computation of the steady-
state electron temperature. Other electron energy loss processes for a particular
point in the plane-layered plasma slab that may be neglected in the energy balance
equation include:

(6) Heat flow due to electron-electron collisions

[ K, (T) V2T, - K, (T) v2T)
(7) Heat flow due to electron-neutral collisions

2
[ Kep(Te) v21‘13 - Ken) V7T)

(8) Heat flow due to particle diffusion

64k2Te 4k
sm"EFF e e s'm"EFF

These last three electron energy loss processes will be shown to be negligible in
Section 2. 4.

There are several important facts that bear careful consideration. First, the
term (2m/M)vi° n in Eq. (60a) refers to elastic collisions between electrons and a
single ion specie of 'average' mass M. The general term for a plasma containing
many ionic species would be written:

where Mt is the mass and Ni the particle concentration of the ith ionic specie. The
approximation consists of replacing Mi by an average mass M and 2:Ni =N e (steady
state). This results in a great simplification of the equations while introducing only
a small error.

Another important point involves the precise balancing of all energy gain and
loss procesaes of tiie electron gas. It was previously mentioned that electron
production mechanisms due to external agencies, such as neutral-neutral impact,
are not included in the collision integral terms appearing on the right-hand side of
the Boltzmann equation [ Eq. (60a)]. Processes such as associative ionization cor-
responding to the forward reactions (1) through (3) and ionization by neutral-atom
impact corresponding to the forward reactions (4) and (5) have been taken into ac-
count in the expression for the steady-state electron concentration, Eq. (72).
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Moreover the forward reactions (1) through (5) constitute a net energy gain by the
electron gas which is not changed by the presence of an electromagnetic field since
the forward reactions do not depend upon the electron temperature. However the
dissociative and three-body recombination processes corresponding to the backward
reactions (1) through (5) constitute an energy loss to the electron gas which does
depend upon the electron temperature.

The consideration of the energy gain and loss terms due to ionizing collisions
by electron impact corresponding to the forward reactions(6) through (10) is more
subtle. The crestion of a new electron by electron impact on a neutral constituent
represents a gain of energy by the electron gas, which may be computed by taking
the second velocity moment of the collision integral for ionizing collisions. The
impacting electron, which is responsible for the ionization, suffers a loss of energy,
which is included in the parameter G. This is because G represents the total
fractional energy loss of an electron due to all electron-neutral collision processes-
elastic electron-neutral collisions, collisions which excite vibrational, rotational,
and electronic levels of molecules, and ionizing collisions. In the absence of an
electromagnetic field, when the electron ges is in thermodynamic equilibrium with
the neutral gas, each of these numerous processes occurs at a rate such that there
is no net gain or loss of energy by the electron gas. The application of an electro-
magnetic field to the ionized flow field results in an elevation of the electrontem-
perature with a consequent change in some of the rate processes. The energy lost
by the electromagnetic field to the plasma is dissipated only by those energy loss
processes over and above what is suffered by the electron gas when in equilibrium
with the neutral gas. This implies that each energy gain or loss process of the
electron gas must be represented in the energy balance equation as the difference
between two terms. One term refers to the energy gained or lost by the electron
gus in the presence of the electromagnetic field at the elevated electron temperature
(T,) and electron density N,(T,), whereas the second term refers to the energy
gained or lost by the electron gas when in equilibrium with the neutral gas at tem-
perature (T) and electron density Ne(T)‘ Thus, it may be seen that each term in
the energy balance equation refers to an energy gain or loss by the electron gas
corresponding to the difference between two states of the electron gas: one state of
the electron gas is at the temperature T‘ and electron density Ne('l‘e) in the presence
of the electromagnetic field, the other corresponds to the equilibrium state at tem-
perature (T) and electron density Neﬂ‘). The appropriate terms in the energy
balance equation are:

The time rate of change of the total kinetic energy in the electron gas:

4 (2m S:v‘rodv) =3 kG INTIT. (749)
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The ohmic heating of the electron gas by the electromagnetic field:

2 2
- ., N _(T )e“vo oo E
%9 ®- S‘o ,,3,1 dv = arEz - __Q_Q_TE.EL_ (74b)

mw

where

. ¥2_ (m)5R 4 (;r_n_vi)
YEFF ~ “ion) grp ¥ T (wr) S‘z"j" P ok, ) -

Electron energy loss due to elastic electron-ion collisions and inelastic
electron-neutral collisions.

of
2%m S: Ezﬁ-n Yion * BGj(v)vj(vz] v (%‘- 33- + vlo) dv =

(74c)
3 (2 3
-3 (—ﬁ N(T,) kcre-T)("ion)EFF +3 ZGy(T,) [“EFF“})] §KN (T ) (T, -T)
" where
2 .
N (T )e kT 4
2 /8' _L'Esl—z' —e D
v, ) = - ln( )
longpy IVm ®T,) e?

Energy gain of the electron gas due to creation of new electrons by ionizing
electron-neutral collisions.

Y, (20m) .S:"‘ E;:onu (r,) - B:oni: ‘Tﬂ dv
- 2m DN, ! [r x,) - 1,0m)] ion, voav (149)
L mm ("4 ooty - 8 sm)] av - T ez, r eloea).
canvdev+xr? A 7 (CBlomEr ) andavar? & T (Blor ey
¢ daT, &), o e ar & | o

- k13 (:,1:) Z‘,( B‘°'“('r)4wdv+wr’( ) Z(’“‘“
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= 2kTeNe(Te) (E%) " ZNj exp(—;-;i-:-) (n:)
+ Ne&e) ka—::&) " DA exv(-—-:—;}) (ra2) (744)
-2KTN (T) (%) 112 LN exp(:;:i) (ra2)
-N(T) (9%)1,2 EAN exp(:;:-j-) (ra2)
Energy loss of the electron gas due to dissociative recombination
2rm 3, (‘: Eagmoc. recomb. (r,) - Bgisaoc. recomb. ‘T.E' vy
- 2mm TN, (':[ {GTg) - 4T opg ay
« 3 kT, N(T,) T N(T) K (T,) + KT2 N(T,) T N,(T) ﬁfr’) (T4e)
-3 ¥rN_r) TN,(T) K (T) - kT2 N (T) TN, (T) d—k%:r—) .

As mentioned previously, Lin and Tellre'a't choice of (Te' 3/2) for the tempera-
ture dependence of the dissociative recombination rates (corresponding to the reverse
reactions 1, 2, and 3) is unrealistic from a physical point of view because it requires
the velocity-dependent cross section for dissociative recombination to assume the
form a(v) = 6(v)/v3, where 8(v) is the Dirac delta function. A (Te' 3’2) temperature
dependence of the rate coefficient predicts zero energy loss by the electron gas for
dissociative recombination. This implausible result is a consequence of the curve-
fitting procedure Lin and Teare have used for the determination of the associative
ionization rate corresponding to the forward reaction 1. Lin and Teare have ex-
pressed the general functional form of the associative ionization cross section on
the basis of the Bates and Muley46 potential energy curve-crossing model:

: ) “lﬂn
QFPEx = u(Rxao)z [1 - exp (‘3. 8 X 10-15 ;ﬁ—-!-)

Ta

[N
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where Ex equals activation energy and g is the ratio between the statistical weight
associated with the initial potential energy curve which leads to the crossing point

and the sum of the statistical weights associated with all possible initial potential
energy curves of the colliding atomic system. p is the reduced mass of the col-
liding system and R.a o is the distance between the two centers of mass of the col-
liding system at the point of crossing. E is the impact energy E = 21' pvz (in electron
volts) and 7 Al is the autoionization lifetime of the molecular complex. While there

is no definite information on the value of the autoionization lifetime of complex

atomic systems, the assumption that r Al << 10” 14 leads to a velocity dependent cross

section expressible in the form:
Qe>g *° aet
x

-where A is a constant. This leads to a velocity-averaged cross section of the form:

.gp-32(° 2, (-E
Q =BT (E QE)E exp‘\k.r/! dE

x

Lin45 has measured the rate for the associative ionization reaction - 1 in the tem-
perature range 4000° to 5000°K by monitoring both the DC conductivity and the micro-
wave attenuation in shock heated 0. 25% 02 - 99, 75% N, mixtures. The velocity-
averaged associative ionization cross sections for this data are plotted as a function
of temperature in Figure 5 of the report by Lin and Teare.4 In their report the
velocity-averaged associative ic;nization cross section for the extended temperature
range 300 <T < 30, 000°K is determined by fitting the functional form Q = AT~ 1,
exp(-Exll(l‘) to the center of the experimental points in Figure 5 and choosing the
activation energy equal to its lowest possible value, the heat of the reaction E =
2.8 ev. When the dissociative recombination coefficient corresponding to the
reverse reaction 1 is obtained by dividing the forward rate by the equilibrium con-
stant, this procedure leads to a recombination rate with a T; 42 temperature de-
pendence. Since this approach leads to the physically unrealistic situation where
there is no electron energy loss on dissociative recombination, a different proce-
dure will be adopted in the present analysis. A least-squares fit will be made of
the functional form for the velocity-averaged associative ionization cross-section
Q- A'l"'ll2 exp(-B/T) correspondini to Tpy >> 10" 14 sec to the experimental points
given in Figure 5 of Lin and Teare.” Since the activation energy must be equal to
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or greater than the heat of the reaction, the restriction B > 32, 500 will be added.
A least-squares fit may be accomplished by minimizing the function

W= [QUB.TY -Qu?

b -4

1

where Q(A.B,T)) = AT}"R exp(-B/T,) and Q, (a constant)corresponds to the Kth
experimental point at the temperature ’!‘k (Figure 5). The minimization is achieved
from the relations 3W/8A = 0 and 8W/8B = 0, which lead to the expressions:

kgl [QA,B,T,) -Q,) QA,B,T) =0

‘21 [QUA,B,T)) - Q] Q(A,B,T) =0.

It is relatively easy to eliminate the parameter A from these two equations so that
a single equation remains to determine the parameter B. Of course the resuit of
the calculation must yield a value for B such that B > 32, 500. Once the parameters
A and B are determined from the least-squares fit, the associative ionization rate
is determined from the formula

BKT KT -2 B
kfl=f-m— Q(A.B.T):Jz.ss“ ATV exp(-By

The dissociative recombination rate is then obtained from the equilibrium constant

Va.58% A exp (- #)
kr (Te). ”EQ -
1 kEQ

where

KBQ © (1.4% 10787+ 1.2x 1071212 + 1.4 x 107177) exp(-32, S00/T).

It should be mentioned that this procedure, while leading to a more realistic func-
tional form for the dissociative recombination rate, suffers from the same weakness



as the development of Lin and Teue.‘ Bdelez has specifically pointed out that

attempts to use the principle of detailed balancing to determine the cross section
for associative ionization from measurements o’ the dissociative recombination
cross section are not justified. This is because the systems in their initial states
are usually in their ground state, whereas the final system is expected to be in an
excited state. Nevertheless the principle of detailed balancing, though not strictly
applicable, will be used in this report to obtain the dissociative recombination rate.
Finally it will be assumed that the dissociative recombination coefficients of the
reverse reactiors 1, 2, and 3 will all be Jequal. The values thus obtained for these
rate coefficients will be utilized until more reliable experimental information is
available.

Energy loss of the electron gas due to three~body recombination:
- ‘

2em 2 ( [Bthree body recomb. (r,) - threc'-body recomb,. _] viav
=N (r) 3P mi7T o8 m— sz""e"
3: [Boy »y] - exp (m._)dv N, ML) mVTF eSimir) V2
2 N (T) - S: E:Gj(") vj(v_;j .ii- exp (;m_?r_v_z) dv
2mm ¥, S.[BTBR(T ) - BTBR ('r_| viav

2 8p-32 .
;; T Ve N (T,) TN, (T,)
i 12
W G (W) (W) dwdvdu
w8 SM 7‘ Yo 3 lgrE

‘w’”um&nkm;)( -‘;(w X

.,,4.’
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Since only steady-state conditions are to be considered, the term d/dt (3/2 kT oNe)
will equal zero and the energy balance equation becomes:

N, (T, Yo "Wy
____T*EI‘LQ-MN (T( ) ENj exp(wrj)(laz)
mw e

12 W,
8kT i
+ N (T,) (—ﬁas) LNy Wy exp (?r—:) (rag)

(15)
2
(ﬂg;; No(T) K(T, 'T)("ion + 2 ; Gy(T,) [vppp Ty j kN (T )(T,-T)

(r,)
3
+ FNTN (T) TN,(T) k,(T,) + KIZN (T,) TN,(T,)

ik, (T)
3 2
- § KN (T) T, N,(T) k,(T) - kTN () TN (1) g —

& DA T AP LN S 3, R S‘:;‘, (Twi g,

u o

dwdvdu

T v

27 6..-32 . 1 (M (Ve

.- R N m TN ) G, (W) (W)dwdvdu.
= “TZ' k )}Sou!wv’-o 1 igpp

A summary of symbols used in the energy balance Eq. (75) follows: N (l‘ ) il the
electron density as a function of electron temperature given by Eq. (72) E is the
mean square value of the total field at a particular point in the plasma.

v = (v ) +(v,.)
EFF en pep ion EFF
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N2 [(m 52 (5 5 -mv?
Even) cp T WF (’ﬁ;) o LNy v e (m w
Wy ) 2 o N ) 2y anier g fe?)
fon' prp 3Nm ee e eD
KTKT, "| 12
ty =|- e .

4N e2m+kr)__|

N; refers to the concentration of the jth neutral constituent. Wi i refers to the joni-
zation potential of the jth neutral constituent (Table 2)

a2 = 0.876 X 10" 16cm?

M is the averaged ionic mass = 24 amu
G j(Te) is the fractional energy loss of an electron in collision with the jth neutral
constituent (Table 1)

2.
v epp T, )‘j ( ) (o N.o (v)v exp kzk,re)dv .

th molecular ionic constituent (N0+, 0;. N;)

as a function of electron temperature.

Ni refers to the concentration of the {

8KT, \ /2
) (0)5x10” 111" Pexp(-55, 700/ TH NO) (—,—,;f—) exp (k}l’. 5) (ra2)N,
e

+

(NO') =
-3 n-3/2

IX10 7T, Ne(Te)

{N)(N)[ ox10™ 11p " Y2 (101 3x1074T+3.3x10° 81210 1279) - exp(-67, 300/T))

" )
RN ) 157(12)N
2 m exp k'l‘ 8

+
D) -

2 -3 .-3/2

3x10 7T, Ne('re)
{ouon 3.2x10" 1~ 2147 5%10757+2.2x107%72) - exp(-80, 100/T))
KT \V2 1
+(02) (E _g) exp ( 12‘5) (ta ) N

©3) = o)

ax 1081 32N r)
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Nk refers to the concentration of the kth atomic ionic constituent (0+, N+) as a
function of electron temperature.

"2
i 8KkT 2
(X)(0)4.62x10" 12T Y2 exp(-313, ooo/ar)+(0)(-n—nﬁ) exp(%e—“)(nz) N,

Ncr)(xrr'3’2( )ZS'T" Y L Yw"zc Wi, (Widwaviuds

'OV

©" =

112
kT
) exp(—%é)(n ) N

N, (T ), 2 (3-:56) %) So e—'L S::Lz S:';l'i g:w l’201(w)

(X) (4. 86X10° 12T Y2 oxp(-333,000 RT M+ (N)

') =
v, (W)dwdvduds.
JEFF

For a given value of the mean-square electromagnetic field (Ez), the electron
temperature at a particular point in the plasma may be determined by solving the
energy balance equation { Eq. (75)) for (Te). All of the parameters which appear in
the energy balance equation are capable of being expressed as functions of electron
temperature in analytic form, except the terms (v en)EFF' Gj('l‘e), and the energy
loss of the electron gas associated with three-body recombination. However these
terms are known or may be evaluated in graphical form as functions of electron
temperature. Then, it is always possible to construct a relatively simple analytic
expression to fit the known graphical form of these functions. This permits the
energy balance equation to be solved for the electron temperature once the intensity
of the electromagnetic field is fixed. When the electron temperature has been
determined, the electron density may be computed from Eq. (72). As soon as the
electron temperature and density have been determined, the dielectric constant (K)
for this particular point in the plasma may be found by using Eq. (67). Finally, on
the basis of the model of a plane-layered plasma medium, the electromagnetic field
distribution in the nonlinear plasma slab may be computed step-by-step by utilizing
the energy balance Eq. (75), the expression (72) for the electron density, and ex-
pression (67) for the dielectric constant in conjunction with Maxwell's equations
expressed in the form of difference equations.

2.4 Heat Transport Through the Electron Gas Due to
Conduction and Particle Diffusion

The various energy loss processes of the electron gas due to heat conduction
and particle diffusion have been carefully investigated by Anderson and Gold.tetn.
These investigations were devoted mainly tothe study of cross modulation
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(Luxembourg) effects in the afterglow of pulsed gaseous discharge plasmas. Elec-
tron-neutral collision frequency changes are produced by heating the plasma in the
afterglow through the application of a heating microwave pulse. These electron col-
lision frequency changes are observed by the variations in attenuation they produce
on a second or 'wanted' probing electromagnetic wave. Anderson and Goldste1n9
properly note that an energy balance equation for a particular region of the electron
gas must include terms which account for energy loss due to heat transport through
(1) electron-electron collisions (Spitzer and Harm!© coefficient), (2) electron-neutral
collisions, and (3) particle diffusion. Hence, in addition to the enumerated electron
gas energy gain and loss terms which account for energy exchange between the
electromagnetic field, the electron gas, and the neutral and ion gas [ Eq. (75)],
energy trangport from one part of the electron gas to another due to gradients in
electron temperature and electron density must also be examined.

Anderson and Goldstein® have given an explicit expression for the heat transfer
coefficient due to electron-neutral and electron-ion collisions which was first derived
by Gould:d?

64 K21 N, )
K 2 e——— (76
eN 97rm VEFF

where YEFF is given by Eq. (2) and v({v) = Z¥on * Yion' The heat conductivity co-
efficient due to electron-electron collisions (K e e) is larger than K eN because the
interelectron collision frequency is high and the Coulomb forces have a long range.

Spitzer and Harmlo have derived an expression for the heat conduction coefficient
for the case of relatively small temperature gradients in a plasma:

. 20 m2ke® (2_)3/2 n
e 3 e4ln (qcz) 3= 6T

where ¢ = (3k 'I‘elm)ll2 . Inlq A me when N = 1012/cm®
GT = 0. 225 Te = 3000°K

Finally, heat transport may occur due to the existence of electron density gradients
in the plasma. This term assumes the form:

2
64 k° T
- ——e YR . T (8)
g'mvEFF e e
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It should be remembered that there will be considerable heat transport at equi-
librium across the sharp density and temperature gradients which exist at the shock
front and at the boundary layer. This heat flow will proceed, of course, even in
the absence of an electromagnetic wave. This heat flow is of no consequence in so far
as the determination of the steady state electron temperature in the presence of the
electromagnetic field is concerned, because it is only those density and temperature
gradients established by the electromagnetic field over and above the gradients which
had originally existed at equilibrium which will be responsible for loss at a particular
point in the plasma of the heat deposited by the electromagnetic#4:éld. These con-
siderations lead to heat transport terms which may be written:

(1) Flow of heat deposited by electromagnetic wave due to electron-neutral and
electron-ion collisions

2
§4k2'reNe(Te) . TN(T) o2
9rm VEFF(Tes e 97m vEFF(’I‘)

(2) Flow of heat deposited by electromagnetic wave due to electron-electron
collisions

K, (T,) vir_ - K, (T) V2T

(3) Flow of heat deposited by electromagnetic wave due to density gradients

2,
64k°T 2

- E— SN & 64k’ T N VT_.
9%m ”EFF(Te) e e 9rm VEFF(T) e

The nonlinear reflection and transmission coefficients for a plane wave incident
at an arbitrary angle upon a plane-layered inhomogeneous plasma slab having the
characteristics of the re-entry sheath may be computed by determining the electro-
magnetic field distribution in the slab by integrating Maxwell's equations by a step-
by-step procedure. The step-by-step numerical integration of the field equations
entails the solution of an energy balance equation at each step. The most general
form for the energy balance equation at an arbitrary point in the plasma slab in-
cludes the following terms:

Energy deposited by Energy gain of electron
e.m. field in plasma + gas due to new particles =
by ohmic heating _l created by electron-

eutral impact
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Energy loss of electron ga.s_L Energy loss of electroni

due to dissociative re- + gas due to three-body f +
combination _J ecombination

Energy loss due to elastic [—Energy transport due‘l\
electron-neutral and electron- + éto electron-neutral +
ion collisions and inelaatic ‘and electron-ion

electron-neutral collisions jcollisions |

| such as collisions which excite,
rotational, vibrational, and !
optical levels and ionizing
collisions -

Energy transport due’]
to electron-electron j + Energy transport due
to particle diffusion

collisions

If the last three energy transport terms in the above equation are negligible
compared to the terms that represent heat flow between the electron gas and neutral
gas, then the fact that the neurral gas constitutes an infinite heat reservoir implies
that there is no coupling of energy between the different layers of the plane-layered
medium. In spite of the fact that the heat transport coefficients may be large (espe-
cially the heat conductivity coefficient due to electron-electron collisions), if the
electron temperature gradients established by the electromagnetic field are not
drastically different from the gradients which existed in the absence of the field,
then the steady-state electron temperature within an arbitrary layer of the plane-
layered medium will not be a function of the temperature at adjacent points. Rather,
the electron temperature, determined from the energy balance Eq. (75), will depend
solely upon the rate of heat flow into the electron gas due to ohmic heating and the
heat flow out of the electron gas to the neutral and ion gas through the various elas-
tic and inelastic collision processes.

It should be emphasized that the effects of heat flow from the electron gas
through the boundary layer to the vehicle's surface have been entirely neglected in
the present analysis. Since most of the streamtube approximations (Lin and Teare,
Rotman and Meltz“) neglect diffusion from streamtube to streamtube (constant
enthalpy along a streamtube) in the process of calculating electron density for equi-
librium and nonequilibrium flow regimes, the standard techniques for computing
electron density profiles about hypersonic re-entry vehicles contain no inherent
mechanism which can account for heat transport acroas the ionized layer. Bond3 4 has
investigated the approach to equilibrium ionization in argon shocks. His analysis
leads to the prediction of charge separation across the shock front due to the dif-
ference in mobilities of positive ions and electrons. The electron density gradient
was responsible for the electron diffusion. This effect will also be neglected in
this report. In addition, for the well-defined shock fronts characteristic of blunt-
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nosed re-entry vehicles at 200, 000 ft traveling at 18, 000 #./sec, it will be assumed
that the gradients of electron temperature and electron density in the boundary layer
and at the shock front will be 8o steep compared to a wavelength (3 cm for X-band)
that they may be represented as plane interfaces. By examining the heat transport
coefficients represented by Eqs. (76), (17), (78), together with the electron tempera-
ture and electron density gradients usually encountered behind the shock of a blunt-
nosed re-entry vehicle at 200, 000 ft traveling at 18,000 ft/sec (see Figures 18, 19,
and 20 in the report by Rotman and Meltz1 l). it is easily seen that the largest heat
transport term is given by K _ (T ) VzTe - Kee(T)VzT, representing heat conduc-
tivity due to electron-electron collisions. Assuming that the electron temperature
and electron density gradients established by the electromagnetic field are not
greater than ten times the corresponding gradients that prevailed in the absence of
the field, it may be demonstrated that the largest heat transport term corresponding
to the greatest change in temperature gradient is at least two orders of magnitude
less than the term representing heat loas of the electron gas through elastic and
inelastic collisions.

The orders of magnitude of these quantities are listed below:

018 3

N =1

e elec/m

4
Teulo ‘K
T = 5000°K

Vz'l‘e < 10% ok /m?

Kee('l‘e) ~ 1072 joules/mzlaecl'K/m

< 1072

Gepp =

VEFF ® 109 coll/sec

Kee(’re) VzTe - xee('r)vz'r w104 joules/sec - m3

3/2 Gerr YEFF Ne k(Te-T) ~ 108 joules/sec - m?

The effects of heat conduction may be taken into account as a second order
correction to the electron density and temperature profile across the layer of ionized
gas. The procedure involves an iterative technique to be described in Section 8.
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2.5 Ditfusion Effects

It should be noted that no mass motion of the plasma is assumed in the analysis.
This is essentially the result of the fact that the plane wave, which is incident upon
the plasma slab, has an infinite extent. Hence there is no flow of plasma out of a
finite region over which the ohmic heating occurs. The electrons which are created
on the spot by the induced changes in the reaction rates are assumed not to diffuse
across the layer of ionized gas. This is a very good assumption since, within the
layer of ionized gas, strong electrostatic restoring forces will severely inhibit the
flow of electrons out of the region in which they were created. Diffusion is charac-
terized by strong coupling between electron and ion motions (ambipolar), since the
Debye length ‘D is much less than the shock layer thickness. The positive ion motion
is completely determined by the structure of the flow field of the neutral gas. The
Debye length for electron densities of 1012 elec/crn8 and electron temperatures of
10, 000°K is about 10"3cm, or less than 10™% times the shock thickness. The condi-
tions for ambipolar diffusion are satisfied, which implies that there will be a space
charge sheath of electrons at the boundaries of the plasma slab (shock front and
boundary layer). It will be assumed that this electron layer buildup at the boundaries
has a negligible effect on the microwave transmission characteristics of the re-entry
plasma sheath.

3. KINETICS OF HIGH TEMPERATURE AIR IN THE
PRESENCE OF AN ELECTROMAGNETIC FIELD

There have been some efforts devoted to the calculation of enhanced ionization
of the re-entry plasma sheath under the influence of intense microwave radiation.
King and Gray,81 King,sz and Sodlm83 have computed the enhanced degree of ioniza-
tion of the plasma sheath under the influence of high-power electromagnetic radia-
tion on the basis of the Saha equation. The Saha equation relates the electron density
in a plasma at the (j + 1)':h stage of ionization to the temperature, partition function,
and ionization potential of the jth stage of ionization. The usual form of Saha's
equation (Bachynski et al. 38) applies only to the case of thermodynamic equilibrium,
and is derived under the assumption that the distribution function for particle energies
is Maxwellian and that the electron temperature equals the gas temperature. Dewan84
has generalized the Saha equation to include any steady-state equilibrium situation
in a plasma. Dewan demonstrates that the steady-state equilibrium condition implies
that the rate of collision and radiation ionization processes for a given stage of ioni-
zation must equal the rate of collision and radiative recombination processes for
that stage. This leads to an expression relating the ion densities to the radiation
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and particle energy distribution functions. Dewaneq‘ has specifically pointed out that

attempts to apply the usual form of the Saha equation to physical situations where
thermodynamic equilibrium does not pertain can lead to totally erroneous results.
Dewan's approach, which ignores collisions between heavy particles, may be applied
to a multicomponent plasma when charge exchange is negligible. For the situation
considered in the present analysis, where the plasma is transparent and ionization
due to recombination radiation is negligible, Dewan's approach reduces to the steady-
state particle conservation equation obtained by taking the zero-order moment of the
Boltzmann equation. An accurate picture of microwave-enhanced ionization of the
plasma sheath may be obtained only by studying the numerous particle-particle and
field particle interactions. Such a detailed study will then reveal the relative im-
portance of the competing ionization processes.

The complete description of the kinetics of the appropriate collisional processes
and the kinetics of chemical reactions occurring in a multicomponent plasma, such
as shock-heated air, is an exceedingly difficult problem. The complexity is due in
part to the simultaneous occurrence of translational, rotational, and vibrational
relaxation behind the shock front, vibrational and radiative excitations, dissociation
and ionization. When an electromagnetic field of high intensity is impressed upon
an ionized flow field, the rates of reaction of many of these processes will be changed.
Nevertheless the problem is not intractable, primarily because many of these proc-
esses can be assumed to occur independently of the others to a high degree of ac-
curacy. Translational and rotational equilibrium of N2 and O2 are achieved within
a distance of about one upstream mean free path behind a normal shock in air (¢ 1
0. 05 cm at an altitude of about 200, 000 feet). The computations of Lin and Teare4
demonstrate that translational/vibrational equilibrium is established at a distance
of about 100 upstream mean free paths. The processes of vibrational relaxation
and dissociation cannot be uncoupled, because molecules in excited vibrational states
dissociate more readily than unexcited onesl.‘}9 Lin and Teare's  investigations of
the various competing ionization processes behind the shock front show that the
relative importance of these processes follows the order:

(1) Atom-atom impact

(2) Photoionization

(3) Electron impact on neutrals

(4) Molecule-molecule and atom-molecule impact.
This order is preserved for most of the region behind an air shock at 0.02 mm Hg
(200, 000 ft) at a velocity of about 20, 000 ft/sec, although as Lin and Teare point
out, the rapid initial rates of change in temperature and chemical composition be-
hind the shock front can cause a shift in the relative order of importance of the
competing ionization processes. Since atom-atom impact is the dominant electron
production mechanism, the rate of production of electrons behind the shock depends
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upon the translational/vibrational equilibrium and the degree of dissociation.
Lin and Teare consider the following processes to be the chief chemical reac-
tions for high temperature air:

(1) 02+X+5.lev-0+0+X
(2) Ny+X+9.8ev-N+N+X

(3) NO+X+6.5ev->N+O+X
(79)
4) O+N2+3.3ev-No+N

(5) N+02-l.4ev-NO+0

(6) N2+02+1.9ev-NO+NO-

Since the degree of ionization for shocks up to 30, 000 ft/sec is always small (less
than 1 per cent), the electron production and recombination processes will not af-
fect any of the neutral reactions (translational-vibrational equilibration and dis-
sociation). Hence Lin and Teare were able to compute the vibrational and transla-
tional temperatures and the particle densities as a function of distance behind a one-
dimensional shock by solving the chemical rate Eq. (79) simultaneously with the
vibrational energy relaxation equations for O2 and N2 together with the mass, mo-
mentum, and energy conservation equations. A knowledge of the reaction rate co-
efficients for the numerous electron production processes enable them to compute
the electron and ion densities as a function of distance behind the shock front.

If a high-power electromagnetic wave is impressed upon the ionized flow field,
the translational-vibrational equilibration process and the dissociation reactions
(79) will not be influenced. This is due essentially to what Lin and Teare term
'the one-way coupling' between the dissociation process and the ionization processes.
Since the fractional energy loss of an electron per collision with a neutral (G) is
always less than 10_2 even up to electron temperatures of 20, 000°K and the degree
of ionization is 0. 1 per cent or less, the electron gas does not affect the energy
balance or the reaction rates of the atomic and molecular processes of the neutral
constituents. Only the ionization and electron recombination process will be affected
by the presence of the high-power electromagnetic field. For example an intense
microwave field will alter the relative importance of the competing ionization proc-
esses by increasing the electron temperature so that ionization by electron impact
on neutrals will become more important than photoionization, and even as important
or more important than atom-atom collisions. This would be most pronounced at
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least ten upstream mean free paths behind the shock front where the electron density
is built up to an appreciable level (see Figure 13, Lin and Teare4). One important
point that should be emphasized is that, in the present analysis, a basic considera-
tion rests upon the assumption that the electron gas is in thermal equilibrium with
the neutral gas in the absence of an electromagnetic field. This assumption is
almost always made in computations of the electron density profiles behind a shock
front (Lin and Teare,4 Rotman and Meltz,“ and Bortnerso). Petschek and Byron‘r’l
and Bond52 have investigated the onset of ionization and the approach to equilibrium
in argon shocks. Here the dominant electron production mechanism appears to be
electron-neutral impact. It was found that during the approach to equilibrium, the
electron temperature is less than the gas temperature. The distance over which
this equilibration takes place behind a shock front in air may be estimated in the
following manner. The fraction of the average energy transferred between an elec-
tron and neutral (G) per collision is of the order 10'2. Hence, in about 100 elec-
tron-neutral mean free paths the electrons should be in equilibrium with the neutral
particles. For a 5000°K shock corresponding to a blunt-nosed re-entry vehicle at
200, 000 ft traveling at 20, 000 ft/sec, this distance would extend approximately 1
cm behind the shock front. Since this distance is short compared to a wavelength
(3 cm at X-band), the representation of the gradients and discontinuities at the
shock front by plane interfaces is a good approximation. This assumption is better
justified at 100, 000 feet.
The various {onization processes which may occur behind a shock in air include:

(1) Ilonization by atom-atom, atom-molecule, and molecule-molecule collisions

(2) Photoionization

(3) Electron impact on neutrals and ions.
Also, charge exchange can influence the total electron density because electron-ion
recombination is specie dependent. Electron attachment to neutrals is another pos-
sible loss mechanism, because a heavy negative ion has little influence on the micro-~
wave conductivity of the plasma.

3.1 Neutral - Neutral Impact

Perhaps the most surprising result of Lin and Teare's study of the ionization
processes behind an air shock is the fact that atom-atom impact is the dominant
electron production mechanism for shock velocities up to about 30, 000 ft /second.
This is an unexpected result, for studies of ionization processes in argon shocks
(Petschek and Byron‘r’l and Bond34) indicated that electron-atom impact was the
dominant mechanism. The minimum activation energy for producing ionization by
atom -atom impact corresponds to the reaction:

N+O+2.8ev— NO' +e.
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The concentration of atomic species will not reach appreciable levels until the dis-
sociation of 02 and N, is fairly complete. For example, for a shock corresponding
to an altitude of 200, 000 ft at a velocity of 20, 000 ft/sec, dissociation of O2 and N2
have attained 75 per cent and 50 per cent of their respective final equilibrium level
at a distance of ten mean free paths behind the shock front. At this distance the
translational temperature of the gas particles has dropped to about 1 ev. In spite
of activation energies which are considerably greater than 1 ev, ionization by atom-
atom impact is an important process because of the relatively large velocity-
dependent cross sections. The cross sections are large because of the crossing of
the potential energy curves representing the interaction potential of the atomic
gystem before and after the collision. This cross section may be determined (see
Bates and Mauey“) by considering the fact that there is a relatively large proba-
bility for a transition to occur between the initial and final states of the atomic
system at the point where their respective potential energy curves cross. This
probability is related to the eigenfunctions of the quasi-molecule formed by the col-
liding systems, the Hamiltonian of the colliding system, and the internuclear dis-
tance at which the curve crossing occurs (Landau-Zener tormuhsa' 6‘).

Lin and 'I‘eare4 have considered the following ionization processes due to
neutral-neutral impact:

(1) N+O+28ev-NO' +e

(2) N+N+58ev-Ny+e

(3) O+0+6.8ev-0,+e

(4) X+0+13.6ev~-X+0"+e

(5) X+ N+ 14.6ev~-X+N +e

(6) N+0,+6.5ev~NO,+e

(I O+NO+17.9ev~NO,+e

#) N+NO+7.8ev~NO +e , (80)
(9 X+NO+9.3ev+X+NO" +e
(10) O+ Ny+ 11.2ev=N,O +e

(1) 0+0,+11.7ev~0y +e

(12) X+0,+12.1ev=-X+0, +e

(13) X+Ny+16.6ev+X+Ny+e

(14) N;+0,+11.2ev-NO+NO' +e .
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By examining the rates reported in the literature, taken in conjunction with theoreti-
cal considerations on the potential curve cressing of atomic systems and the equi-
librium relationship, Lin and Teare have selected values for most of the forward
and backward rates of the neutral-neutral impact ionization reactions (80). By and
large, the values chosen for these rates appear to be reasonable, except for reac-
tions (1), (2), and (3) of Eq. (80). The temperature dependence of T;3/2 selected
for the dissociative recombination rates corresponding to the backward reactions
(1), (2), and (3) requires that the velocity dependent cross section assume a physi-
cally unrealistic form. Hence, in the present analysis, the rate for the forward
reaction (1) is determined by making a least-squares fit of the functional form
AT'II2 exp (-B/T) to the experimental data of Lin?® (see Figure 5, Lin and Teare4).
This procedure is described in detail in Section 2. 3. 2. The backward rate for reac-
tion (1) is obtained from the equilibrium relationship The backward rates for the
dissociative reactions 1, 2, and 3 are assumed equal. Then, the forward rate con-
stants for the associative ionization reactions 2 and 3 were obtained through the
equilibrium relationship.

In the present investigation, atom-molecule and molecule-molecule impact
ionization processes are neglected (except reactions 4 and 5). This is justified on
the basis of Lin and Teare's estimations of the specific ionization rates for cach of
the various ionizing processes. The specific ionization rate is defined as the abso-
lute value of the time rate of change of the normalized electron density multiplied
by the quantity ( 1/ Us)' where

11 = ypstream mean free path = 0. 05 cm at an altitude of 200, 000 ft
Us = shock velocity.

Figure 8b from the report of Lin and 'I‘eare4 indicates that for a shock at
200, 000 ft traveling at 20, 000 ft /sec, atom-molecule and molecule-molecule impact
ionization processes are quite negligible compared with ionization by atom-atom
impact for most of the region behind the shock front. Consequently, in this report,
only the ionization processes due to neutral-neutral impact corresponding to reac-
tions (1), (2), (3), (4), and (5) of Eq. (80) will be considered. The reaction rate
coefficients for the forward reactions (4) and (5) are taken from the estimates made
by means of the collision theory used by Bortner.39 The three-body recombination
rates for the reverse reactions (4) and (5) are based upon the Thomson theory36
generalized to the case of a multicomponent plasma in which the electron tempera-
ture i8 not equal to the gas temperature. In conclusion it might be mentioned that
in addition to the forward reactions (4) and (5), both Borl:ner39 and Atanah“ have
estimated that the following reactions are capable of producing 0+ and N+ at quite
a rapid rate:
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(1 N+N0»0*+N2+e
81)

(@) 0+N0-N++02+e

However, Lin and Teare have neglected these reactions, and since reliable rate
constants for these reactions are not available, they will be neglected in this report.

3.2 Photoionization

The rate at which electrons are produced per unit volume for a particular fluid
element behind a shock due to photoionization depends upon the number densities of
the atomic and molecular species, their photoionization cross sections, and the
photon number density. The far ultraviolet appears to be the ‘spectral region which
is most effective in producing photoionization of N,, O,. and NO. 1t is only through
a consideration of excitation, emission, and radiative transport phenomena that the
spectral photon density for a particular fluid element may be determined. This
difficult problem has not been solved by Lin and Teare.4 Instead a somewhat crude
estimate has been made of the electron production rate due to photoionization. On
the basis of measurements made by Camm et al. ,53 Hammerlings4 has deduced that
the major contribution to the far ultraviolet radiation emanating frcm an air shock
may be attributed to the b' 'E: -~ X 'z" transition of N2.

This fact has enabled Lin and Tea\re4 to obtain an expression for the total in-
tensity of ultraviolet radiation per unit area emanating from the shock. Photoioni-
zation cross sections of N, 02. and NO have been taken from the data of Weissler
et al.,55 and Wainfan et al.z56 The energy of the photons corresponding to the
b' ‘2: -~ X'z’ transition of N2 (12. 9 ev) is such that this ultraviolet radiation is
capable of ionizing only the molecules O2 and NO. These facts lead to the following
approximate expression for electron production due to nhotoionization (Lin and Teare4).

dN_  7a[(0,)+ (NO)] (N,} L exp(-E /KT )
—€ o -9 82)
dt 8 (1!_ + ‘re)

where
T. = radiative life time o.f upper electronic state of N2
= 4x10°9 sec
T, = collisional de-excitation time
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E = energy difference between two electronic states of N2
= 12.9 ev

L = effective length of a particular fluid element

'1‘* = an effective temperature that determines the population of the

electronic states of N2.

By using Eq. (82), Lin and Teare4 were able to illustrate the effect of photo-
ionization on the electron density profile behind an air shock corresponding to a
velocity of about 20, 000 ft/sec at an altitude of 200, 000 feet. Figure 12 of the re-
port of Lin and Teare4 demonstrates that for distances behind the shock front greater
than one upstream mean free path, photoionization produces a negligible contribution
to the total electron density.

3.3 Jonization by Electron Impact

Since the Maxwellian distribution function has a long tail at high electron veloci-
ties, ionization produced by electron-neutral impact will become comparable with
associative ionization by atom-atom impact when the el ectron energy becomes equal
to or greater than about one-sixth the ionization potential of a neutral constituent
(NO has the lowest ionization potential: 9. 25 ev). Equation (68b) describes the rate
at which electrons are created by electron-neutral impact. The right-hand side of
Eq. (68b) has been obtained from the integral expression for impact ionization by
expanding the ionization cross section in powers of (¢ - W. ) and neglecting second-
order terms in (wr/wl) Here, ¢ =5 ) mv? is the electron energy, W; = ionization
potential of neutral constituent, and kT has been assumed to be much less than the
fonization potential (kT << W,).
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whex;e %on § (Wu)- 0 and W‘:i °ion i (wij) = wag. This result was first obtained by
Lin."" The neutral constituents which will be considered in this analysis include:
Nz. 02. N, O, and NO. The right-hand side of Eq. (68b) should give a fairly ac-
curate estimation of the electron production rate due to electron-neutral impact
for electron energies up to about 2 ev (20, 000°K).

It might be mentioned that the mechanism of electron production by electron

impact on neutrals in excited metastable electronic states has been neglected.

3.4 Effects of Charge Exchange

The effects of charge exchange on the total electron density behind an air shock
will be manifested indirectly. The presence of an electromagnetic field in the
ionized flow field does not influence the rates of reaction for the charge transfer
processes, for the gas temperature is not changed. Charge exchange involves an
alteration of the relative concentrations of the various ionic species. The electron
density will be affected if the electron-ion recombination rates are different for
different species. The somewhat meagre experimental data on dissociative recom-
bination rates seem to indicate that the recombination coefficient is the same for
the species NO+, N;. and 0;. This implies that the el ectron density would be af-
fected only by charge exchange between the molecular and atomic species:

xt+vz-vZ'+ x . (83)

This type of reaction (83)is termed asymmetrical nonresonant charge transfer, for
which the cross sectionat 2 ev for an Li' - Argon system is about 10'20cm2
(Fogel et al.“). Most nonresonant charge transfer processes are quite inefficient
at thermal energies. However there is another type of reaction, termed asym-
metrical resonant charge transfer, which may have a larger cross section at ther-
mal energies. An example of asymmetric resonant charge transfer has been sug-
gested by Omhott:>®

0" (o) + N, (x Ty v =0~ 0CR) Ny (A, v 1) (84)

According to Bates and Lynn,eo it is improbable that this reaction has a large
cross section at thermal velocities.
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But, as Batel61 has indicated, even though charge transfer is rather inefficient
at thermal energies, ion-atom interchange may be quite rapid:

xtexz-xy'+z . (85)

It is possible that the rate coefficient for ion-atom interchange may be as large as
lo'gcmslsec at thermal energies, provided the activation energy is small.

Hence, it would seem that charge exchange could influence the steady-state
electron density if the following typical chain of reactions occurred.

(a) O++N2-NO++N
(86)
() NOt+e~N+O

The jon-atom interchange reaction (86a) could be fairly rapid, and the dissociative
recombination reaction (86b) proceeds much more rapidly than the three-body re-
combination of electrons with O . Only the rate of the ion-atom interchange reac-
tion

+ +
0"+0,~0,+0 87

has been repo.*ed in the literature. Dickinson and Sayeuss have measured a rate
of 10" lem?/sec at 300°K, which implies a cross section of about 2 X 10~ 18.m2,

Lin and Teare4 have listed the following charge exchange reactions:

(1 Ny+N=-N,+ N+ 1.0ev
2) N;+O~N2+0++2.0ev
3 Ny +Op =N, + Oy +3.5ev
@ Nj + NO = N, + NO' + 6.3 ev
(5) N+0-N+Ot+0.9ev
) N +0,~N+Oj+2.5 ev
) N +NO - N+NOt+ 5. 3ev

(8) o++02-—o+o;+‘1.sev
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(9 o'+ NO~O+NO" +4. 4 ev

(10) o;+ No-02+No*+ 2.8 ev

These reactions are all of the asymmetric nonresonant type, except the reverse
reaction (2), which may be of the asymmetric resonant type. Lin and Teare have
taken the cross section for all the exothermic reactions to equal 3 X lo'mcmz.
This is a couple of orders of magnitude larger than the asymmetric nonresonant
charge transfer cross sections measured by Fogel et 51.58 in Lt - Argon systems
at 2 ev. However, Lin and ’l‘em-e'1 have investigated the effects of varying the exo-
thermic charge exchange cross section on the electron density and positive ion
density profiles behind an air shock at about 200, 000 ft, corresponding to a velocity
of 20,000 ft/second. Figure 11 of the report by Lin and Teare4 demonstrates that
changes in the charge transfer cross sections of factors of 100 in either direction
produce changes of about 10 per cent or less in the density profiles of electrons and
all positive ions except 0; . For distances between 1 and 100 upstream mean free
paths behind the shock front, the ionic specie O; exhibits abowt a 400 per cent change
in density when the charge exchange cross sections are varied by a factor of 100.
Lin and Teare‘ have listed the following ion-atom interchange reactions and
charge rearrangement reactions:

) N‘;+o-No+N+-2.2ev

@ N;+O~NO'+N+3.0ev

(3) N2+0+-'N0+N+-4.2ev

) N2+0+-N0++N+l.1ev

(5) N;+oz-No+No*+4.5ev )
(89

(6) N2+o;~No+No*+o.9ev

N 0;+N~NO+0" - 0.2 ev

®) O;+N-NO'+0+4.2ev

(9 0,+N -NO+O* +2.3ev

+ 4+
(10) 02+N-NO +0+6.7ev

Although no experimental data on the rates of reactions (89) has been reported
in the literature, the ion-atom interchange reaction (87) has a measured cross
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section of about 10~ lsc:m2 at 0. 03 ev. This result may be imterpreted to imply that

the ion-atom interchange processes [ Eq. (89)] have a cross section which is one or
perhaps two orders of magnitude greater than the cross section for asymmetric non-
resonant charge transfer [ Eq. (88)]. Lin and Teare4 have taken the cross section
for the exothermic charge rearrangement reactions (89) to be equal to about ta: .
The cross sections for the reverse reactions (88} and (89) were computed from the
equilibrium constant using the principle of detailed balancing. ’

Because of: (1) the apparent insensitivity of the electron density and most of
the ion specie densities to changes in the charge exchange rates, (2) the extreme
paucity of experimental data and the uncertainty in the charge exchange rates, and
(3) the enormous increase in complexity of the expressions for electron and ion
densities, the effect of charge exchange will not be included in the present analysis.
However, if more sufficient experimental data on charge exchange reactions become
available, then Eq. (71) for the rate of production of each ion species should be modi-
fied to include theae effects:

+
d(NO') ' +
& kf"lO. 1 (NYO) + kf'lO. 6 (NO)Ne - kr70. 1(No )(Ne)

+ 4 +
+  kpgg 4 NPHNO) - k gq 4 (NJNO') + kg (N )(NO)

+ . + +

+ + +
+ Ky 10 (0)MNO) -k gg 14 (0,)NO™) + kegg H(NZHO)

(90)
+ + +
- kegg g NUNO) + kegg 4 (N))O) - k g (MNINOT)

+ 3+ +

+ Kego 5 NGO, - k g0 5 (NONNO) + kpgo o (OFNN,)
+ 4+ +

- K,gg g NOMNO®) + kpgy o (O)N) - k oo 5(OYNO™)

+ +
+ Kego 10 N0 - K g 10 OO

The expressions for the rate of production of the ionic species N;. 0+, and n in-
cluding the effects of charge exchange are as complex as the equation for not [Eq.
(90)] . They may be obtained from inspection of Eqs. (70), (88), and (89).

3.5 Effects of Electron Attachment

There are primarily four types of electron attachment processes:



72

(1) Radiative attachment

e+x—=x +hy

(2) Three-body attachment

e+x+y—-x +y

(3) Dielectronic attachment

e+ x—~ (x)*

(4) Dissociative attachment
etxy~x +y

Of the various constituents of high-temperature air, O, 02. and NO have the largest
electron affinity (Masseyss). The electron affinity of O is 1. 465 ev; of 02. 0.43 ev;
of NO, small but positive; of Nz, negative; of N, negative. In air at thermal ener-
gies of about 0.5 ev corresponding to translaticnal temperatures of about 5000°K,
none of these negative ions will be stable. Hence the effects of electron attachment
will be neglected. '

4. THE FIELD DISTRIBUTION AND THE REFLECTION AND

TRANSMISSION COEFFICIENTS OF AN
INHOMOGENEOUS, NONLINEAR PLASMA SLAB

The previous sections of this report have been devoted to a detailed description
of the method for computing changes in the electron density, electron collision fre-
quency, and electron temperature which have been brought about by the presence of
a high-power electromagnetic wave in the ionized flow field surrounding a hypersonic
re-entry vehicle. The analysis of the transmission characteristics of the re-entry
sheath under the influence of high-intensity microwave radiation is based upon the
model of a plane monochromatic wave incident at an arbitrary angle upon a non-
uniform multicomponent plasma slab. Part of the complexity of the problem arises
from the fact that the reflection and transmission coefficients of the plasma slab
depend upon the conductivity of the ionized gas, which is a function of the electron
density and collision frequency. These parameters depend upon the electron tem-
perature distribution in the plasma slab. The electron temperature is determined,
in turn, by solving the energy balance equation which contains the local field as a
parametar. The technique developed for the computation of the transmission and
reflection coefficients of the plasma slab consists in replacing the layer by a stack
of homogeneous sheets. This model lends itself, in a natural way, to the application
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of step-by-step numerical integration of the field equations expressed in the form
of difference equations. By assuming a value for the amplitude of the transmitted
field, and taking backward differences through the slab, the coupled system of
equations which describe the conductivity, electron density, energy balance of the
electron gas, and the electromagnetic field distribution may all be solved simul-
taneously. This method is general enough to incorporate the inhomogeneities of
electron density and collision frequency into the analysis. The method is not
restricted to cases where the permittivity gradient is amall compared to a wave-
length, such as the convenient WK.B asymptotic solution. It is found that for the
case of a plane wave of arbitrary polarization, incident at an arbitrary angle upon
the slab, the wave may not be entirely uncoupled into two waves: one polarized
perpendicular and a second parallel to the plane of incidence. This is because the
dielectric constant for a point in the plasma slab is a function of the amplitude of
the total local field.

A homogeneous plasma slab does not constitute a physically realistic model for
problems concerned with the nonlinear interaction of microwave radiation with the
plasma sheath. This is because the microwave power absorbed by the plasma de-
pends critically on the ratio (wp/w). Klein et 31.59 have shown that a maximum
transfer of energy between an electromagnetic field and plasma occurs at a point
just behind the plasma resonant density (N_ = wzmeolez). This implies, of course,
that the interaction of the microwave field with an inhomogeneous plasma resuilts in
a nonuniform deposition of energy.

Bloembergen and Pershan67 have already investigated a somewhat similar prob-
lem concerning the solution to Maxwell's equations at a plane interface between a
linear and nonlinear medium. However their analysis proceeds from a relationship
between the nonlinear atomic properties of a medium and a time dependent suscepti-
bility tensor. Inthe case of a plasma under the influence of high-power electro-
magnetic radiation, this corresponds to the situation when the relaxation time
(TEN = 1/Gv) for energy transfer between the electron gas and neutral gas is much
less than the period of the impressed field (rpy << T or w << Gv). Then the electron
temperature will not reach a steady-state value independent of time. Rather, the
electron temperature will have a sinusoidal time dependence at the second harmonic
of the frequency of the impressed field (see Ginzburg and Gurevicha). The electron
density will also be time dependent. The characteristic time for electron density
variations will be a complicated function of the rates of electron production and
electron recombination. Molmud68 has considered inducing time-dependent pertur-
bations of the electron density and collision frequency in the D-region of the iono-
sphere by utilizing high-powered ground-based radio transmitters. The perturbations
may be observed by the changes produced in the absorption of a second or wanted
wave. Here, photoionization, which is the dominant electron production mechanism,
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is assumed to proceed at a rate which is independent of the electron temperature.
The chief electron loss mechanism is the temperature sensitive process of attach-
ment to 02.

The time-dependent perturbation treatment of nonlinear media of Bloembergen
and Pershan67 predicts harmonic wave generation at the boundary between a linear
and nonlinear medium. A reflected second harmonic wave will propagate in the
linear medium in the same direction as the reflected fundamental wave, whereas
the transmitted harmonic will in general propagate in a direction different than the
transmitted fundamental. The matching of the field amplitudes at the boundary for
a wave incident at an arbitrary angle leads to generalizations of the usual Fresnel
formulas. The treatment of Bloembergen and Pershan67 is applicable to plane wave
transmission and reflection from magnetoactive plasma-vacuum interfaces for
incident waves whose frequency is such that w << Gv. Inthe present analysis, only
waves whose frequency satisfies the condition w >> Gv will be considered, so that
harmonic generation will not occur.

4.1 The Field Equations (MKS)

The propagation of electromagnetic waves in a nonlinear plasma are governed
by the usual equations of phenomenological electrodynamics, that is, Maxwell's

equations:
TXE = oH
\7)<E-~,.¢c,8t JuowH
(91)
== oF = - -
VXH-EO—&+J JeowE+J

where the diamagnetic effects of the plasma have been ignored. The E and H fields
are assumed to be proportional to e+j“’t. If there is no external magnetic field
present in the plasma, the macroscopic current density may be related to the electric

field through the scalar conductivity;
T=0 . (92)

For the nonlinear medium under consideration, the conductivity depends upon the
square of the electric field amplitude. Equation (65) is a general expression for the
scalar conductivity in terms of the basic plasma parameters such as electron-¢lec-
tron collision frequencies, the Maxwellian electron velocity distribution function,
and the electron density. It is more convenient to work with the complex dielectric
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constant of the plasma, K, defined in terms of the conductivity by Eq. (66). Max-
well's equations may be written in terms of the complex dielectric constamt:

VXE a-juowﬁ

(93)
VX H = je wKE

For the range of parameters of interest (m2 >> vz; w>y e e), the approximate ex-
pression (67) for the dielectric constant is adequate.

4.2 Wave Propagation in Nonlinear Inhomogeneous Media

4.2.1 A LINEAR, HOMOGENEOUS SEMI-INFINITE PLASMA

Graf and Bnchymki-’o have treated the problem of plane wave reflection and
transmission from a plane interface between vacuum and a homogeneous plasma.
The presence of the electromagnetic field is assumed not to change the properties
of the plasma medium. The plasma is characterized by a complex dielectric co-
efficient:

K= Kr -3 Ki ,
The vector Helmholz equation which governs wave propagation in the plasma medium

is obtained by taking the curl of the first Eq. (93) and substituting curl & from the
second Eq. (93):

curl curl E = grad div E- Vzﬁ

(94)
= 2
3 - jwuo curl H = ko KE
By utilizing the condition:
V- B¢,V KE-ekV B+ TR=0 (95)
together with the fact that the plasma is uniform: V K=o, Eq. (94) becomes:
vE+iikE x0 (96)

where ko 2 wfe.
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Figure 1.

Figure 1 illustrates the geometry of the problem. Since the field vectors will not
vary as a function of x (parallel to the plane of incidence), and the phase velocity in
the y direction will be the same in both media, solutions of the wave Eq. (96) for
each component may be written:

E, =A exp[PZ+§QZ - j k, sin 0y]

wherei = x,y,z.
Graf and Bnchymld"o have obtained expressions for the real and imaginary part of
the propagation constant in terms of the dielectric constant and the angle of incidence:

w2
Pk (§{K,-sin?0?+k?) -3, - o’ o) ¥

(97)
Q=k, [‘:‘{(Kr - lin29)2+ l(‘z}ll2 +%(Kr - 8in? 0)} 1/2.

The surfaces of constant phase do not coincide with the surfaces of constant ampli-
tude in the plasma medium. The surfaces of constant amplitude are planes parallel
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to the interface, whereas the planes of constant phase are at an angle (tan” 1k':,sinolQ)
with respect to the interface.

If Maxwell's Eq. (93) 1i8 written out in component form in Cartesian coordinates,
it is easily seen that Ex’ Hy, and Hz are indepehdent of E_, E,, and Hx' The first
set of field components corresponds to a wave with the electric vector perpendicular
to the plane of incidence and is termed the transverse electric mode (TE). The
second set of components corresponds to a wave with the electric vector in the plane
of incidence and i8 termed the transverse magnetic mode (TM). An incident wave
polarized at an arbitrary angle may be resolved into these two modes. For a linear
homogeneous medium, the propagation characteristics of one of these modes in un-
influenced by the presence of the other mode. However these two modes are not
uncoupled for a nonlinear medium, and are uncoupled only in special cases for
inhomogeneous media.

Graf and Bachynskim have derived generalized Fresnel equations for each mode
of polarization by matching the tangential components of E and i and the normal
component of D at the interface. Graf and Bachynsk:l70 have derived expressions
for the Poynting vector in the plasma for both modes of polarization. It is demon-
strated that for the TE mode the instantaneous Poynting vector changes magnitude
and direction during one cycle, so that the wave is not, in general, plane. The
average Poynting vector is perpendicular to the planes of constant phase. For the
TM mode, it is shown that, in general, neither the instantaneous nor the average
Poynting vector is perpendicular to the planes of constant phase. Only for the case
of a lossless plasma or normal incidence are the waves in the plasma plane.

For the case of a nonlinear plasma slab with a permittivity gradient perpen-
dicular to the plane interfaces, wave propagation may be considered by imagining
the medium to be composed of a stack of linear homogeneous plasma sheets. The
solutions of the field equation for a particular sheet will then be representable in
the form:

E; = Ai exp[ PZ + QZ - jko sin 0 y]
The essential point is that the real and imaginary parts of the propagation constant
(P + jQ) will depend upon the magnitude of the dielectric constant (K) at the point Z

in the plasma. The dielectric constant will depend both on the nature of the inhomo-
genieties and on the square of the local field amplitude.

4.2.2 EXACT SOLUTIONS OF THE WAVE EQUATION FOR A ONE-
DIMENSIONAL INHOMOGENEOUS LINEAR PLASMA MEDIUM

A rather small number of exact solutions of the wave equation have been obtained
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for normal incidence on an interface when the dielectric constant varies only in a
direction perpendicular to the plane interface. With reference to Figure 1, exact
solutions exist only when the dielectric constant K varies with Z in certain speci-
fied fashions. The sclutions are usually expressible in terms of tabulated functions,
and are particularly useful when the geometric optics approximation VK/K << 27/A
is not valid. The geometrical optics approximation is inappropriate when K = 0.
Ginzburg” has discussed the solutions of the wave equation for normal incidence
when the dielectric coefficient has a variation in one direction. The form of the
dielectric constant and the solutions to the wave equation are as follows:

(1) A linear layer without absorption, K =1 -2/ Z,, solutions in terms of
Bessel functions of one-third order, or Airy functions.

(2) An absorbing linear layer, K = 1 -Z/Z1 -jla+ B Z/Zl), solutions in terms
of Bessel functions of one-third order with complex arguments.

(3) A parabolic layer without absorptionK = 1 - wlz‘/w2 (1- zzlzfn), where
Wy is the plasma frequency corresponding to the maximum electron density and Z&n
is the half-width of the layer, solutions in terms of Weber functions, or parabolic
cylindrical functions (see Whittaker and Watsonn).

(4) A layer characterized by a dielectric constant of the form K = a(b + Z)'z,
solutions in terms of polynomials in Z.

(5) A layer characterized by a dielectric constant of the formK=a+b e
1+ e i ce’2(1 4+ 7% 2
Ref. 74).

vZ.

solutions in terms of hypergeometric functions (see

Pappert and Plato” have treated the cases of a linear profile, a parabolic
profile, and a cosine profile. A cosine profile in dielectric constant leads to solu-
tions of the wave equation in the form of Mathieu functions. Taylor'72 has demon-
strated that the solutions to the wave equation may be represented in terms of
cylindrical Bessel functions for an exponential profile and for a profile varying as
Z'z. Buchsbaum'73 has obtained solutions of the wave equation in the form of Hankel
functions for a dielectric constant of the form

a n
K xo 1+ a2)

It should be mentioned that there exist cases where an exact solution to the
wave equation can be obtained for normal incidence and that these cases are capable
of being extended to arbitrary angles of incidence for the TE mode of polarization.
This is always true when an exact solution to the wave equation has been obtained
corresponding to a dielectric constant K(z), such that it contains an arbitrary con-
stant that does not depend upon Z. The proof of this statement rests upon the follow-
ing three facts:
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(1) For the TE mode of polarization, E - VR(2) = 0, 8o that, by Eq. (95),
V- E-=o0 :

(2) The component of the phase velocity of the incident wave parallel to the
interface (k o sin 8) is the same a8 the component of the phase velocity of the trans-
mitted wave parallel to the interface.

(3) The formal structure of the wave Eq. (96)

2
LB vk k- sin®O E =0
dz
is not changed for the TE mode as the angle of incidence (8) is varied.

4.2.3 APPROXIMATE METHODS FOR OBTAINING SOLUTIONS TO THE
WAVE EQUATION FOR A ONE-DIMENSIONAL INHOMOGENEOUS
LINEAR PLASMA MEDIUM

Most treatments of electromagnetic wave propagation in inhomogeneous media
assume that the variations of dielectric constant occur along only one coordinate
direction. Studies of electromagnetic wave transmission and reflection character-
istics from plane media whose dielectric constant varies in a direction perpendicular
to the plane interfaces have been conducted by Schellnxnofr,75 Penico, 12 Stickler, 13
Richmond, *4 Albint and Jahn,”” Nitoll and Basu,”® and Brekhovskikh.'? Klein
et a1.69 and Safran and Meltzso have applied the WKB asymptotic approximation and
a numerical integration of the Riccati equation for the complex impedance of a di-
electric slab to the problem of computing the tranamission characteristics of the
inhomogeneous re-entry plasma sheath. In problems involving propagation between
two media with differing dielectric constant, the surface at which the discontinuity
occurs usually may be represented as a plane, cylindrical, or spherical boundary.
A general problem would involve obtaining solutions to the wave Eq. (94) to compute
physical observables, such as phase shift, absorption coefficients, reflection and
transmission coefficients. Schelkunotf75 has pointed out that for the general case
of waves propagating in an inhomogeneous medium, such that the direction of propa-
gation coincides with the direction of the gradient of dielectric coefficient, it is not
always possible to interpret the solutions of the wave Eq. (84) as outgoing or incom-
ing disturbances. However, for the present analysis, in which a plane-layered
plasma slab is bounded on both sides by vacuum, this difficulty will not arise ex-
cept perhaps when the incident wave is polarized in the plane of incidence and the
dielectric constant K » 0, This would correspond to the physical situation where
plasma waves could be excited in the ionized medium.
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The general form of the Maxwell Eqs. (93) indicates that the electric field com-
ponents are coupled. These field components become uncoupled only for very spe-
cial coordinate geometries. l"emco12 has investigated the uncoupling of the field
components for several orthogonal curvilinear coordinate systems. The choice of
coordinate system is usually dictated by the nature of the boundary surface when
more than one dielectric medium is involved. This facilitates the matching of the
field components at the boundary. Penir:o12 has emphasized the fact that the usual
techniques for obtaining solutions to the wave Eq. (94) require that two of the three
unknown field components be eliminated from the equation, so that a scalar equation
for a single field component may be derived. Also, the operator \72 which appears
in Eq. (94) may be interpreted as the Laplacian only for Cartesian coordinates (see
Strntton,.'6 p. 49). l:’enico12 claims that the reduction of the wave Eq. (94) to a
scalar equation for a single field component is possible in general only when the
dielectric constant K is a function of one coordinate.

Consider the oblique incidence of a monochromatic plane wave on a plane-layered
medium which is inhomogeneous in a direction normal to the interface (Z-axis).
Outside the layer, for Z <O (see Figure 1), the incident wave may be written:

E = E_ exp[ -jk, (8in @ y + cos 6 2)] . (98)

Since the incident wave is indcpendent of the x-coordinate, both reflected and re-
fracted wave will be independent of the x-coordinate for a medium in which the
dielectric constant is independent of x. Using Gauss' law, Eq. (95) may be written
in Cartesian coordinates in the form:

2 2

+ + + * VinK)=0
AR AL A
2 2
9°E 3°E .
Z Z . .2 N .
';y-r“;;r”‘o“z*ez E- ¥InK) =0 (99)
2 2
?°E, o°E
X, X .32
—87+8Z2 +k°KEx =0

The field components not only satisfy the wave Eq. (88) they must also satisfy Max-
well's Eq. (93), which assume the following form in Cartesian coordinates:
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oy * ) €, WKE; .

By examining Eq. (100), it may be clearly seen that the vector components Ey' Ez,
Hy form one independent set; whereas the components E. Hy-‘ and H, form a second
independent set. The first set corresponds to the TM mode of polarization; the
second, the TE mode of polarization. An incident transverse electric mode will
excite only a TE mode in the plasma. Similarly an incident TM wave will excite
only a TM mode in the plasma slab. This is true for a nonlinear one-dimensional
inhomogeneous medium. Moreover for a linear inhomogeneous medium, the propa-
gation of the TE wave is completely independent of the presence of the TM wave, 80
that the modes are entirely uncoupled. However, for a nonlinear medium, whether
it is inhomogeneous or not, the propagation characteristics of the TE wave depend
upon the TM mode, for the dielectric coefficient is a function of the square of the
total field amplitude. )

The phase velocity of the electromagnetic wave in the y-direction (parallel to
the interface) is the same in vacuum as in the plasma slab, even when the medium
is nonlinear and inhomogeneous. This is merely a statement of Snell's law of
refraction, and may easily be proved by considering the nonlinear inhomogeneous
medium as the limiting case of a medium composed of a stack of linear homogeneous
layers:

ko sin 0 = k sin Or

where



0 = angle of incidence and 0. is the angle of refraction at the first interface. One
important consequence of Snell's Law is that:

;]
WEi.-jko'inOEi

wherei = x,y, or z. Another conseguence is that the angle of incidence equals the
angle at which the transmitted wave emerges from the far face of the inhomogeneous
nonlinear slab.

Richmond 14 has set up the field equations in the form of difference equations so
that the field distribution in one-dimensional inhomogeneous slabs may be computed
using a step-by-step numerical integration technique. By assuming the value for
the amplitude of the transmitted wave on the source-free side of the slab, the field
distribution in the medium may be calculated by taking backward differences. For
the TE mode of polarization, Richmom:l14 has utilized the wave Eq. (99) for the x-
component of the electric field. To obtain the solution to the difference equation,
the field must be known at two points. The amplitude of the transmitted wave at the
source-free sid2 of the slab, corresponding to the point Z = d, is assumed. The
field at the location of the first backward increment, correspondingto Z = d-h, is
obtained by making a Taylor series expansion of the field about the point z = d in
powers of the increment size h. The difference equation form of the wave Eq. (99)
then prescribes the field amplitude at the point z = d~2h in terms of the field ampli-
tudes at the points z = d and z * d-h. Each backward step corresponds to the numeri -
cal integration of the wave equation across a layer whose dielectric constant K(z)
is uniform over the step-size h. The boundary conditions for the field components
must be satisfied at each transition across a discontinuity in dielectric constant.
The matching of the field components at each boundary of the plane-layered medium
presents no difficulty for the TE mode, since the tangential components E, and H
and the normal component Hz are all continuous across a discontinuity in dielectrie
constant K. The treatment for the TM mode is somewhat different. Here there is
a component of the electric field Ez' which 18 normal to the plane interfaces. Since
the normal component of the electric displacement must be continuous across a
discontinuity in dielectric constant, the boundary condition for the D vector would
require that the condition

K(z,) E, =K(Z)E, (101)
'+ -
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be satisfied at each step in the numerical integration, where the plus subscript re-
fers to the layer just to the right of the discontinuity and the minus subscript refers
to the layer at the left. Inthe case of a linear inhomogeneous medium, this added
difficulty may be circumvented by considering only the field component tangent to
the plane interfaces, E v Once the field distribution for the tangential component

E v is determined, there is information sufficien: 1o determine the total reflection
and transmission coefficients of the slab. This is because the angle of incidence
must equal the assumed angle of tranemission. However, for a nonlinear medium,
the case of the TM mode of polarization presents special difficulties. It is impos-
sible to find the field distribution for the E_ component alone, because all the elec-
tric field components are coupled through the dielectric coefficient K, where K is a
function of all the components. For a nonlinear plane-layered medium, the step-by-
step numerical integration must be carried out for all the electric field components
simultaneously, with the condition of Eq. (101) imposed at each dielectric coefficient
discontinuity for the normal electric field component E,. This involves an iteration
at each boundary, since the dielectric coefficient to the left of each discontinuity,
K(z_), is unknown. First, the value that K(z_) would have if the medium were linear
is assumed, and this determines E, . The fields thus obtained are usec to compute
a new value for K(z ), and then a new value for E,_ is obtained from Eq. (101).
Convergence of the {terative procedure should be rapid since the nonlinear departures
from the linear case will be relatively small.

4. 2. 4 TECHNIQUE FOR COMPUTING THE FIELD DISTRIBUTION,
TRANSMISSION AND REFLECTION COEFFICIENTS OF A NONLINEAR
ONE-DIMENSIONAL INHOMOGENEOUS PLASMA SLAB

The procedure used to compute the field distribution in an inhomogeneous non-
linear plasma slab is similar to the method used by Richmond 14 for the case of
linear inhomogeneous media. A major modification involves the direct use of Max-
well's equations, Eq. (100), to find the field distribution, instead of working with the
wave Eq. (99). This facilitates the numerical integration, for a Taylor series
expansion of the field amplitude does not have to be made in order that the numerical
integration be started.

Equation (100) may be written in dimensionless form:

Bu
SZ+jsin0u, = ~jv,

(102)
mx

oYy
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ne =
si u, v,

(102)
v
1¥+jnn0%=Kux

bvy

- "Ik Uy
where

sinva=-Kuz
u = Ve, Ey

vi=~/u_H

o i

T =k°Z

Here the dielectric constant K is a function of the electron density N e and effective
collision frequency VEFF For the present analysis the approximate expression

(67) for K is adequate. At each step in the numerical integration, the energy balance
equation, Eq. (75), must be solved for the electron temperature Te' This permits
the determination of the electron density from Eq. (72) and the effective collision
frequency from Eq. (2). The field amplitude squared, which appears in the ohmic
heating term of the energy balance Eq. (75), is the square of the total field:

2 o2
E® = Ej

+E3+E§

The solution is started by assuming values for the amplitude of the transmitted
field u, the angle of polarization § {tan ¢ = (uy +u ) +l2u Uy ], and the angle of trans-
mission 6(9 = tan luzu 1) at the source-free side of the slab z =d,, where d = slab
thickness and plus subscript refers to a location on the side of a dielectric constant
discontinuity furthest from the source. At a point just inside the plasma slab,
corresponding to z = d_, the tangential electric and magnetic fields uy, “y' Ve vy,
and the normal magnetic field A have the same magnitude as the assumed values
at the point z = d_. If there is a normal component of electric field u,, its value at
a point just inside the slab (ud_) must be obtained by making successive approxima-
tions to the solution of Eq. (101),
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where the first approximation to K(d_) may be taken as the value of the dielectric
constant for a linear medium. If there is no component of the electric field normal
to the interfaces (TE mode), there is no change in the value of the amplitude of any
of the field components as a discontinuity in dielectric constant is traversed. How-
ever, whether the mode is TE, TM, or mixed, the calculation of the dielectric con-
stant at the point z = d_ involves the solution of the energy balance Eq. (75) for the
electron temperature, the determination of the electron density from Eq. (72), and
the determination of the effective collision frequency from Eq. (2). Once a self-
consistent set of values have been obtained for the field components and dielectric
constant at the point z = d-, Maxwell's equations expressed in the form of difference
equations give a prescription for finding the fields at the point z = (d-h),, where h
is the increment size used in the difference equation. The distance h corresponds
to a plane layer thickness over which the electron temperature, density, and col-
lision frequency are assumed to remain constant. The dimensionless form of Max-
well's equations, Egq. (102), expressed as difference equations are:

uy(f-h) = uy(‘r) + jh [8in @ - ;}(E-‘] u,(r)

ug(r-h) =u () - jh vy(f)

v,(7-h) = sin @ u_(r-h) (103)
vy(r-h) = v () + jh (sin?0 - K] u_(r)

vx(-r-h) = vx(‘r) +jK uy(r)

u (r-h) = - sin 0K v (r-m) .

Equations (103) yield the values of the field amplitudes at the point z = (d-h)_,
once the fields at the point z = d_ are known. All the field components at the point
z = (d-h), are equal to the fields at the point z = {d-h)_, except the normal component

of the electric field, ug, which is again determined by obtaining a self-consistent set
of solutions to Eq. (101):

K(r-h)_ u(r-h)_ = K(r-h) u (r-h),



Eq. (67) for K(r-h)_, the energy balance Eq. (75), the electron density Eq. (72),
and the Eq. (2) for effective collision frequency. If Maxwell's equations [Eq. (103))
are combined with the boundary condition for the normal electric-field component,
the results may be represented in the form:

uy(‘r-h) = uy(‘r) + jh{sin 0 - i{'(n—é | uz(‘r)_

K(r-h),
u (r-h)_ = RG-H u (r-h),

ul('r-h)+ .- “!’(' 8 vx(r-h)

(104)
Vx(f-h) = vx('r) +jK uy('r)

u lr-h) 2u (r) - jh vy('r)

vz('r-h) = sin 8 u_(r-h)
2
vy(r-h) = vy('r) + jh[sin”0 - K] ux(-r)

The difference equation for the normal component of the electric field is singular
when K = 0. This situation corresponds to the excitation of plasma waves in the
medium by the component of the electric field normal to the interface (TM mode).
If collisions are present the energy associated with these plasma waves will result
in heating of the plasma (see Glnzburgn).

The step-by-step numerical integration is performed until the point z = 0_ is
reached, corresponding to the face of the slab upon which the plane weave is incident.
Once the entire field distribution has been obtained, the reflection and transmission
coefficients for each mode of polarization may be found immediately from the fol-
lowing relations:

Transverse Electric Mode:

sin @ (mlncl + lﬁnl) = - H_(o)
cos @ (Iﬁmcl - I‘HRD * B (o)

(105)
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_ I‘ﬁRI ~ -H_(0) cos @ - H_ (o) 8in @
R = N - -‘Hz(o) cos 0 + Hy(o) sin 0

.l stn20(n? @+ uE @) 12

T - & | " T-H,0 s 0T H (o)sinﬂ]
inc

Transverse Magnetic Mode: (108)

sin0 (1B, |+ 18D+ E )

inc

cos 8 (|8, | - |§R|) = - Ey(o)

ine

'ERI E (o)cos 8+ E_(o) sin &
T [E %Y con 0 - E, (o) #in 0]
2|

B sinZO[E @) +E (dn
T“ N 'il_a(o)coso-ﬁ(o)ainOI
inc
where
&, | ana |E |

are the mngni!udu of the incident magnetic and electric vectors, l and |
are the magnitudes of the reflected magnetic and electric vectors, | snd l

are the magnitudes of the transmitted magnetic and electric vectors R; and T
refer to the reflection and transmission coefiicients for the TE mode and R' | nd
T| | refer to these quantities for the TM mode. The angle 0 is the angle which was
assumed as the angle of transmission. It should be noted that the angle of trans-
mission must equal the angle of incidence.

In this analysis, calculations will be performed only for normal incidence. In
this case, Eq. (105) assumes an indeterminate form. For normal incidence there
is no distinction between the TE mode and the TM mode. The following relations
should be used for computing the reflection and transmission coefficients of a non-
linear slab for normal incidence:
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R * 3l + vlo
_uid;
T u{o

u(o 5
E,, * ﬁ{q%, (3. 37 X 10%) volts/m
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u{o 5
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The computations may be performed for several step sizes (h) to obtain an estimate
of the accuracy of the solution. Stickler 13 and Richmond“ have discussed the de-
pendence of the accuracy of the solution on the increment size for the case of trans-
mission through plane-layered dielectric slabs.

5. CONCLUSIONS

The results of the computations for the reflection and transmission coefficients
of a nonlinear plasma slab which simulates the composition of high-temperature air
(5000°K) will be made available in a future report. Order of magnitude estimates
reveal that power fluxes of the order 100 to 1000 wuttl/cm2 are capable of produc-
ing factors of four or five changes in electron temperature. This will result in
about factors of two change in collision frequency and factors of two or more changes
in electron density. From the graphs of attenuation constant vs (wp/ w)z for various
ratios of ¥/w presented by Bachynski et al.,sl it may be inferred that these changes
will induce changes in absorption coefficient of factors of two or more for certain
ranges of the parameters (wp/w) and (v/w). These effects are certainly important
from a re-entry communications system point of view.

Unfortunately the order of magnitude changes which are expected to result from
this type of nonlinear interaction are of the same order as the uncertainties in the
rate coefficients for electron-ion recombination. The present state of the art is
such that even for calculations of electron density profiles about blunt-nosed re-
entry vehicles under equilibrium flow regimes, only order of magnitude estimates
may be obtained. Thus, the effects of the nonlinear interaction of microwave radia-
tion with ionized flow fields, as presented in this report, will result in changes of
electron density which are of the same order of magriitude as the uncertainties in the
electron density. However, as more accurate information on the rate coefficients
for the many processes that occur in high-temperature air become available, the
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theory presented will enable accurate predictions {o be made on changes in power
transmitted through ionized flow fielde at relatively high power levels.

The present analysis has been based upon the assumption that the plasma medium
reaches a steady state under the influence of a plane monochromatic electromagnetic
wave. The boundaries are agssumed to be so steep compared to a wavelength that
they may be represented as plane interfaces. Figures 10a, b, and c of Lin and
Teare's report indicate that the eiectron density has essentially reached its maxi-
mum value one hundred upstream mean free paths behind a normal one~-dimensional
shock front for Mach numbers between about 15 and 25. At an altitude of 200, 000
ft, one upstream mean {ree path is about 0. 05 cm 8o that within a distance of 5 em
the electron density builds up to about 5 X 1012 particles/cms. If this region over
which steep electron dezsity gradients occur is less than about a quarter of a wave-
length, they may be represented as plane interfaces to a good approximation. Of
course, at altitudes below 200, 000 ft the gradients are even steeper; while at about
250, 000 ft the shock front becomes diffuse. At 100, 000 ft, one hundreél upstream
mean free paths is about 0. 1 cm. The one hundred mean free paths criterion for
electron density buildup applies only to a normal one-dimensional shock. The model
considered in this report of a planar slab is more appropriate for regions that lie
at a distance of more than one nose radii behind the tip of a hemisphere-cylinder
body. Naturally the plasma sheath in this region is cylindrical in shape, but a planar
geometry will give an accurate description of the electromagnetic reflection and
transmission characteristics if the radius of the cylinder is large compared to a
wavelength.

Since the boundaries defining the plasma medium at altitudes less than 200, 000
ft are very steep compared to wavelengths for X-band radiation (3 cm) and frequencies
lower than 10 kMcps, the boundaries will be represented as plane interfaces. For
an abrupt discontinuity in dielectric constant of the medium, there is no energy
deposition at the discontinuity, only reflection or transmission of electromagnetic
radiation. Hence the assumption will be made that the boundaries of the plasma
medium are not disturbed by electromagnetic radiation at X-band frequencies for
power levels up to 1000 watts/cmz. This appears to contradict the result of the
investigations of King, 16 who found that the plasma-air boundary representing a shock
front will move toward a source of high-intensity microwave radiation., This study
is based upon the WKB solution of the wave equation for the field distribution in the
plasma medium, and is valid only when the electron density gradients are small com-
pared to a wavelength (when w > “s and d {n Ne/dz << 1/A). The application of the
WKB approximation to problems of propagation through the re-entry plasma sheath
appears to be restricted to altitudes above 200, 000 ft and to electromagnetic radia-
tion wavelengths of about 1 cm or less. The analysis as presented in this report
pertaing to electromagnetic propagation from the vehicle out through the re-entry



90

sheath, whereas King is concerned primarily with propagation in the opposite sense.
Thus, insofar as propagation out through the re-entry sheath is concerned, the inter-
face of the plasma medium defined by the boundary layer will not physically move
because of the proximity of the vehicle surface. Since the power level of the electro-
magnetic wave will be considerably reduced Ly the time the wave has traversed the
plasma layer, one may assume that the boundary of the plasma medium at the shock
front will not move. One of the basic assumptions in this report is that the electron
density and temperature. profiles will redistribute themselves behind the shock front
under the influence of high-power electromagnetic radiation in such a faghion that

no mass motion of electrons will result, nor will the boundaries defining the plasma
medium be seriously perturbed.

Kingm has found that an ionization front will move toward the source of high-
power electromagnetic radiation. This result was obtained under the agsumption
that the WKB approximation adequately represents the solution to the wave equation
in the plasma medium. Thus, King has obtained the result of a moving plasma
boundary precisely for the case where the electron density gradients at the boundary
vary slowly compared to a wavelength. The model King has chosen to represent the
interaction of high~power radio-frequency radiation with a plasma is somewhat
idealized, in that a full description of the many microscopic processes is not taken
into account. For instance only three parameters are used to characterize the
plasma medium: the ionization cross section (ai), the total cross section (¢), and
the ionization potential (Wi). Not only is such a model restricted to plasmas con-
sisting of but a single neutral specie, but also King uses the same parameters
(¢, 0,, and Wi) to represent the medium in front of and behind the ionization profile.
This is certainly not realistic with regard to air shocks, where the constituent NO
(which has a low ionization potential) exists behind the shock front but not in the un-
perturbed air ahead of the shock front. Then, too, the assumption that the quantity

2
[_G'J_ N_e“y Ezj
Wo m(wzwz)

represents the number of ion pairs created per unit time is founded on the supposition
that the collision frequency for momentum transfer », which appears in the formula
for the conductivity, is identical to the 'effective' collision frequency given by Eq.

(2). But this is approximately true only if the velncity-dependent cross section for
momentum transfer o(v) is not too strongly dependent on velocity and if the isotropic
part of the electron distribution function {° is Maxwellian. King has avoided a dis-
cussion of the conditions under which the isotropic part of the electron distribution
function will remain Maxwellian and hence there is no direct employment of the
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electron temperature a8 a parameter. This was possible by coupling the solution

to the wave equation directly to the particle conservation (continuity) equation, by-
passing any consideration of an energy balance equation. However the conditions
under which the isotropic part of the electron distribution function will remain
Maxwellian under the influence of an electromagnetic field (ve e>>Gv) are precisely

the same conditions that lead to a large thermal conductivity coefficient of the electron
gas (K e e)‘ Electron-electron collisions are effective in transporting heat from one
part of the electron gas to another, and a high interelectron collision frequency
implies a large thermal conductivity coefficient.

These preliminary facts lead to the important observation that the electromag-
netic energy deposition in a slowly varying electron density gradient is not always
as selective as Klein et al’ =~ claim, because the pattern of electromagnetic energy
deposition in a plasma may be determined, in certain important instances, by the
thermal conductivity of the electron gas in addition to its dependence on the variation
of dielectric constant of the plasma (due to electron density gradients). Klein et 1%?
have found that, for a slowly varying electron density gradient, a maximum transfer
of electromagnetic energy to the plasma will occur just anterior to the resonant
plasma depth. The resonant plasma depth is the depth of the plasma for which the
electron density becomes critical, N, = (w2+v2)me°/e2. A high interelectron col-
lision frequency (ve e >> Gv, a condition that is met for the stagnation region of the
re-entry plasma sheath and many radio-frequency plasma discharges in the labora-
tory) will produce an equilibration within the entire body of the electron gas of the
electromagnetic energy deposited at any point on the electron density profile. If
Vee >> Gy, the time for energy equilibration within the electron gas Tee = ”"ee
is much faster than the time for energy transfer between electron gas and neutral
gas. Electromagnetic energy which is most efficiently deposited at the critical
density on the electron density profile will very quickly be redistributed within the
entire electron gas behind the ionization front. The effect of the high thermal
conductivity of the electron gas, together with the rapid electron-electron thermali-
zation time, has not been included in King's model. It is expected that the electron
thermal conductivity effects will tend to reduce the local rate of electron growth
at the resonant plasma depth, so that the picture of an ionization front moving toward
the source of electromagnetic energy will be modified. It is suggested that the
whole phenomenon of moving ionization fronts, including the effects of electron
thermal conductivity, should be more intensively investigated both from the experi-
mental and theoretical point of view.

It should be stressed at this point that the important effects of electron gas
thermal conductivity may be incorporated into the scheme presented in this report.
In the first approximation the effects of the thermal conductivity of the electron gas
are neglected. This is justified if the electron temperature gradients established
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by the presence of the electromagnetic field are not greater than one hundred times
the gradients that prevailed in the absence of the electromagnetic field. It may then
be easily shown that the terms in the energy balance which represent heat flow from
electron gas to neutral and ion gas are one or two orders of magnitude greater than
the terms which represent heat transport from one part of the electron gas to an-
other (when Vee >> Gv, the term Vxee -V.Te is dominant). Hence, in the first
approximation the plasma medium may be divided into a stack of homogeneous slabs
with no thermal coupling between them. Then, the steady-state electron density and
temperature distribution due to a high-power electromagnetic wave may be found by
using the energy balance equation, the equation for the effective dielectric constant
of the plasma medium, and Maxwell's equations written in the form of difference
equations. The energy balance equation is solved for the electron temperature at
each step in the numerical integration, where only terms that represent heat flow
from electron gas to neutral and ion gas are included. Once the new electron
density and temperature distribution have been found due to the perturbing electro-
magnetic field, a correction to the temperature distribution due to thermal conduc-
tivity may be taken into account by an iterative procedure. Consider a thin sheet
of plasma within the slab, located at the position Z and with thickness dZ. The
heat flowing into the face at Z is JZ ee(dT /dZ) dA, whereas the heat flowing
into the face at Z + dZ is j Z+dz ee (dT /dz) dA. By using the divergence theorem,
the net heat flowing into the thin sheet may be written:

2
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Since only the heat flow produced by the perturbing electromagnetic field should be
considered in the energy balance equation, the quantity

dK, dK 2 2
ee (dT _ dT
[ ( ) * Kee ) 2 T ar \dz) " Kee az"’J

represents the heat flow into a thin sheet of plasma due to electron thermal conduc-
tivity.

After finding the temperature distribution in the slab by neglecting the electron
thermal conductivity, a second step-by-step numerical integration of the field equa-
tions may be performed, where now the term

2
dee (TN dzl‘ dK” .
ar_ \ 4z ee ;;i
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is added to the energy balance equation at each step in the numerical integration.
This procedure will give a new electron temperature distribution (and a new electro-
magnetic field distribution) that may now be used to perform a third step-by-step
numerical integration. The entire procedure may be repeated until a completely
self-consistent set of solutions to Maxwell's equations, the energy balance equation,
and the equation for the effective dielectric constant of the medium have been ob-
tained.

The asgsumption that the neutral and electron gas remain stationary during the
interval of high-power interaction is reasonable, so that there will be little conling
of the plasma as a result of convective flow. The characteristic time for energy
equilibration within the electron gas is Tee ° llvee s 10'9 sec and the character-
istic time for energy transfer between electron gas and neutral gas is TEN ™ lo'ssec
at Te = 5000°K and TEN ™ 10'7 sec at Te = 20, 000°K for the stagnation region of an
air shock at 200, 000 feet. This relaxation time for energy transfer between electron
gas and neutral gas will become as fast as 10'7 gec at Te = 5000°K and 10'8 sec at
Te = 20, 000°K for shocks at 100, 000 feet. Assuming a characteristic length of 10ecm
corresponding to the width of an electromagnetic beam, and a maximum flow velocity
of 106cm/sec, the time for a portion of the plasma sheath to flow out of the influ-
ence of the perturbing beam is approximately 10.5 seconds. Thus the very important
conclusion has been reached that the plasma sheath may be considered as a stationary
gas when considering the perturbing influence of high-power electromagnetic radia-
tion on the ionized flow field, especially at altitudes below 200, 000 ft and at power
levels that may raise the electron temperature to 20, 000°K (corresponding to an
electron fractional energy loss G ~ 10°%).

The entire analysis has been carried as far as the present state of the art
permits. At power levels higher than about 1000 watts/cmz, electron temperatures
will be brought into a range (above 30, 000°K) where the cross sections for elastic
and inelastic electron-neutral collisions and the rate coefficients for electron-ion
recombination are unknown.

A basic parameter in the analysis, the relative fractional energy loss of an
electron per collision (G) is known for most constituents only up to electron energies
of about 3 ev (30, 000°K). Of course, it has been implicitly assumed during this
investigation that the values of the relative fractional energy loss of an electron per
collision with neutrals which have been experimentally determined for cold gases
(T =~ 300°K) will still have the same dependence on electron temperature for high
temperature air (T = 5000°K). In other words it has been assumed that G is only
a function of 'I’e and not T. This is similar to the implicit assumption of Shkarofsky
et al32 that the collision cross sections for electron scattering of the neutral con-
stituents is a function only of Te and not T. The gas temperature is assumed to
have an effect only in that the degree of dissociation of air changes with gas
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temperature, so that the effective scattering cross section or effective G factor of
the gas mixture must be determined by weighting the cross sections or C factors
by the relative concentrations of the appropriate neutral constituents. However the
cross-section ¢, or the parameter G, for the particular j h neutral constituent is
assumed to vary only with Te and not T.

That this assumption may not be entirely correct can be seen from the following
considerations. A homonuclear diatomic molecule such as N, or O2 has no perman-
ent dipole moment, so that the vibrational levels corresponding to each electronic
state of the molecule are metastable and may have a lifetime as long as 10'5 seconds.
The rotational states have a lfetime of about 10'9 seconds. When the translational
temperature behind an equilibrium shock in air is about T = 5000°K (0. 5 ev), most
of the 0 will be dissociated but there will be an appreciable amount of N Molecule-
molecule and atom-molecule collisions will occur at the rate of about 10" c-1
It requires only one or two molecule-molecule collisions to achieve translational-
rotational equipartition and about 100 molecule-molecule collisions to achieve trans-
lational-vibrational equipartition. For Te = 5000°K, p/p 0> 1073 ; and for T = 5000°K,
Gy » 106 sec'l. At about one hundred upstream mean free paths behind a normal
one-dimensional shock at 200, 000 ft, corresponding to a velocity of about 20, 000
ft/sec, an appreciable fraction of the molecules (mainly NO and NZ) will be in ex-
cited vibrational states. Harries 28 found that the lowest vibrational state of } N, is
0.29 ev. Since NO is a nonsymmetric diatomic molecule, it has a permanent dipole
moment; thus the lifetiine of a vibrational level is expected to be about 10'8 sec,

The time between electron-neutral inelastic collisions is TeN © 1/Gyv ~ 10'6 sec,
80 that electron collisions with the molecule NO can result in collisions which ex-
cite at least the lowest vibrational level of NO, However the lifetimes of the vibra-
tional levels of the homomuclear molecules N, and O2 are about 10'5 sec and 10'3
sec respectively, which are longer than 1/Gy » 108 seconds. Hence electron
energy loss under impact with the molecules N, and 02 can occur only by excitation
of the rotational levels of the agsociated metastable vibrational levels of these
molecules, and not by excitation of the vibrational levels themselves because the
second vibrational level would not be available for excitation.

For cold gases (T ~ 300°K) the electron energy loss per collision with a homo-
nuclear diatomic gas is independent of pressure and depends only on electron tempera-
ture. Since cross-modulation measurements of Gv are usually made in gases that
are less than 0. 1 per cent ionized, relatively few molecules are involved in inelastic
encounters and there is always a plcntiful supply of molecules which will not be in
metastable levels. This implies that, in the case of cold (T' » 300°K) homonuclear
diatomic gases, cross-modulation measurements of Gv for Te # 5000°K would not
depend upon whether TeN ° 1/Gv is less or greater than TVIB'
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This analysis implies that whereas for a cold gas (T = 300K, 'I‘e = 5000°K) the
measurements of Gv are dependent only on Te‘ for a high temperature (T = 5000°K,
'I‘e = 5000°K) homonuclear gas (N 2) the fractional energy loss of an electron depends
both on electron temperature and whether TEN ® 1/Gv is much greater or much
less than TVIB' For N, and O2 the following relations should apply:

When 7. = 1/Gy < TVIB (High Pressure)
G(T = 5000°K, Te = 5000°K) < G(T = 300°K, Te = 5000°K)
When TEN * 1/Gv >> TVIB (Low Pressure)

G(T = 5000°K, 'l‘e = 5000°K) = G(T' = 300°K, 'I‘e = 5000°K)

For a diatomic molecule with a permanent dipole moment such as NO,

G(T = 5000°K, Te = 5000°K) = G(T = 300°K, 'l.‘e = 5000°K)

regardless of the value of Gv (TEN = 1/Gv is almost always longer than TVIB(NO) ~
10'8 sec except at very high pressures).

Massey and Burhop7 contend that the G values of O2 are somewhat higher
thanthe G values of N2 for cold gases at 'I‘e »~ 0.5 ev because of low-lying electronic
states of the oxygen molecule which may be excited under electron impact. The
low-lying electronic states of O, (aA8 at 0.8 evand b 2: at 1. 3 ev) are metastable
with enormous lifetimes of the order of 10 seconds. At T = 3000°K (02 is fairly
well dissociated at T = 4000°K and p/po = 10'3). about 10 per cent of the O2 molecules
will be in the excited metastable low-lying electronic states. Only the rotational
levels associated with the lowest vibrational state of the metastable electronic state
of 02 will be available for excitation under electron impact. Hence it is expected
that at high gas temperatures (T = 3000°K), high pressures 7o, = 1/Gy << TVIB
and for 'I‘e % 0.5 ev, the G values for 02 will decrease from the cold gas G values
corresponding to the same electron temperature. The interesting point is that the
G values for 02 should exhibit a more pronounced decrease than the G values for N2
as the gas temperature is raised. The G values for NO should not show much of a
change as the gas temperature is raised. A final point should be added about the
effects of electron attachment on the measured G values of electronegative gases
(NO and 02). Although electron sttachment to neutrals constitutes a loss of energy
so far as the electron gas is concerned, the rates of electron attachment (three body)
and detachment are so slow compared with the electron energy loas due to rotational,
¢ vibrational, and electronic excitation that electron attachment does not contribute
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to the relaxation time TEN * 1/Gv as measured in a cross-modulation experiment.
These interesting puuestionaﬁead to the possibility of a whole new host of experi-
mental investigations of the G values of diatomic gases at high gas temperatures
(T 5 3000°K).

It is hoped that the type of approach presented in this report will bring about a
better understanding of the difficult problem of breakdown of missile antennas at
high-power levels. The model of a plane-wave incident at arbitrary angle upon a
nonlinear one-dimensional inhomogeneous multicomponent plasma slab may also be
applicable to the interpretation of ionospheric radio-scattering data performed at
high-power levels. Molmucl68 has already suggested using high-powered ground-
based radio transmitters, such as the Puerto Rican Arecibo facility, to perturb
the D region of the ionosphere. Induced changes in electron density and collision
frequency may be observed by the changes in reflection coefficient they produce on
the high-power transmitting wave or on a second wanted wave. From an examina-
tion of the shape of pulse returns, it may be possible to gain information on the
dominant rate processes for electron attachment and recombination.

f_—
The author is indebted to Mr. Michael Mentzoni for several stimulating discussions.
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